Put AI to Work
April 15-18, 2019
New York, NY
Pradip Bose

Pradip Bose
Distinguished Researcher and Manager, IBM T. J. Watson Research Center


Pradip Bose is a distinguished research staff member and manager of the Efficient and Resilient Systems Department at the IBM T. J. Watson Research Center as well as an adjunct professor at Columbia University. Pradip has been involved in the design and presilicon modeling of virtually all IBM POWER-series microprocessors, since the pioneering POWER1 (RS/6000) machine, which started as the Cheetah (and subsequently America) superscalar RISC project at IBM Research. Previously, he was the lead performance engineer for POWER3, a high-end processor development project, at IBM Austin and served as a visiting associate professor at the Indian Statistical Institute, where he worked on practical applications of knowledge-based (AI) systems. His current research interests are in high-performance computers, artificial intelligence, power- and reliability-aware microprocessor architectures, accelerator architectures, presilicon modeling, and validation. Pradip is the author or coauthor of over 100 publications (including several book chapters). He’s an IEEE fellow and a member of the IBM Academy of Technology and was the editor-in-chief of IEEE Micro from 2003 to 2006 and the chair of ACM SIGMICRO from 2011 to 2017. He’s received 25 Invention Plateau Awards and several Research Accomplishment and Outstanding Innovation Awards from IBM.


4:05pm4:45pm Wednesday, April 17, 2019
Implementing AI
Location: Rendezvous
Secondary topics:  AI case studies, Deep Learning and Machine Learning tools, Reliability and Safety
Pradip Bose (IBM T. J. Watson Research Center)
Average rating: *****
(5.00, 1 rating)
Pradip Bose details a next-generation AI research project focused on creating "self-aware" AI systems that have built-in autonomic detection and mitigation facilities to avoid faulty or undesirable behavior in the field—in particular, cognitive bias and inaccurate decisions that are perceived as being unethical. Read more.