October 28–31, 2019
Please log in

TensorFlow model optimization: Quantization and pruning

Raziel Alverez (Google)
1:40pm2:20pm Thursday, October 31, 2019
Location: Great American Ballroom J/K
Average rating: ****.
(4.67, 3 ratings)

Who is this presentation for?

  • Researchers, ML engineers, and people focused on deployment


Experienced Practitioner


Join Raziel Alverez to learn from TensorFlow performance experts who cover topics including optimization, quantization, benchmarking, and more.

What you'll learn

  • Gain a low-level overview of TensorFlow, techniques in optimization, and how and why to use benchmarks
Photo of Raziel Alverez

Raziel Alverez


Raziel Alverez is a senior staff engineer at Google, where he leads TensorFlow model optimization, aimed at making machine learning more efficient to deploy and execute. He’s a cofounder and engineering lead of TensorFlow Lite, and he developed the framework used to execute embedded ML models for Google’s speech recognition software (now in TensorFlow Lite) and lead the development of the latest iteration of the “Hey, Google” hotword recognizer. Previously, Raziel codesigned and implemented the Self-Assembling Interface Layer that forms the core of Appian’s (APPN) low-code development platform. He graduated summa cum laude from both the BS and master’s programs in computer science and machine learning at Mexico’s ITESM.

  • O'Reilly
  • TensorFlow
  • Google Cloud
  • IBM
  • Databricks
  • Tensor Networks
  • VMware
  • Amazon Web Services
  • One Convergence
  • Quantiphi
  • Lambda Labs
  • Tech Mahindra
  • cnvrg.io
  • Determined AI
  • Inferencery
  • Manceps, Inc.
  • PerceptiLabs
  • Valohai

Contact us


For conference registration information and customer service


For more information on community discounts and trade opportunities with O’Reilly conferences


For information on exhibiting or sponsoring a conference


For media/analyst press inquires