
Monitoring Custom Metrics
How I Learned to Instrument First and Ask Questions Later

Intro
What's going on? Who am I? Why are we here!?

Agenda
➔ About Metrics

➔ Understanding Your Applications From Within

➔ Instrument First, Ask Questions Later

➔ Tales of Timeseries

Metrics
The Most Important Pillar of Observability

What Are Metrics?

➔ Measurements; datapoints

➔ Usually taken at regular intervals

➔ Reported with the identity of what they measure

➔ Over time, form a timeseries

Metrics Identity

➔ Metric name

➔ Dimensions

◆ Key/value pairs

◆ Cardinality

➔ Minimum set to uniquely identity the timeseries

Metrics Identity
{

 "metric": "requests",
 "dimensions": {
 "host": "h-1",
 "endpoint": "/endpoint",
 "customerId": "c-1"
 },
 "timestamp": 1540808955484,

 "value": 42

}

Building a Metadata Model

➔ Distinct timeseries for each set of dimensions

➔ Population of timeseries; you can look at

◆ Individuals

◆ Aggregates, across any subset of dimensions

Building a Metadata Model

➔ Common dimension names and values

◆ Makes it easy to work with different metrics & datasets

◆ Aggregations or computations across common pivot values

➔ Metadata properties on dimensions

◆ Reduces dimensions to the strict subset for uniqueness

◆ Can be manipulated out of band and w/o code changes

Benefits of a metadata model

➔ Reduces burden on developers

➔ Adds value

◆ by making comparisons and computations possible

◆ by giving more ways to slice and dice timeseries data

Understanding Your
Applications From Within

The Need for Data

➔ RED metrics aren't everything

➔ Need data about internal state and behavior

➔ Need history and trends, not just point in time

➔ Custom metrics are the best path to this visibility

How To Instrument

➔ Metrics libraries exist for every language

➔ Instrumentation is just a line of code away

➔ Let's go through the basics...

How To Instrument: Counters
public void doAction(Action action) {

 try {

 // Count it.

 metrics.counter("actions").inc();

 action.execute();

 // Do it.

 } catch (ActionExecutionException e) {

 // Count errors.

 metrics.counter("action.errors").inc();

 }

}

How To Instrument: Counters
public void doAction(Action action) {

 try {

 // Count actions by type.

 metrics.counter("actions", "type", action.getType()).inc();

 action.execute();

 } catch (ActionExecutionException e) {

 // Count errors by action type and error code.

 metrics.counter("action.errors",

 "type", action.getType(),

 "error", e.getErrorCode()

).inc();

 }

}

How To Instrument: Counters
executions = data('actions').sum(by='type')

errors = data('actions.errors').sum(by='type')

(100 * errors / executions).publish('error rate')

How To Instrument: Gauges
Queue<Action> actions = new ArrayBlockQueue<>(1024);

metrics.registerGauge(

 "queue.size", // metric name

 "name", "actions", // a dimension

 actions::size); // provider for the value of the gauge

// Don't forget to unregister in teardown; this holds a strong

// reference to the queue.

How To Instrument: Histograms
public Collection<Result> search(Query query) {

 Collection<Result> results = query.execute();

 metrics.histogram("num.results").update(results.size());

 return results;

}

How To Instrument: Timers
public void doAction(Action action) {

 Timer t = metrics.timer("actions", "type", action.getType());

 try (Timer.Context c = t.time()) {

 // Do it; it's getting counted and timed.

 action.execute();

 }

}

How To Instrument: Timers
public void doAction(Action action) {

 Timer t = metrics.timer("actions", "type", action.getType());

 long start = System.nanoTime();

 try {

 // Do it.

 } finally {

 t.update(System.nanoTime() - start);

 }

}

Instrument First,
Ask Questions Later

Culture of Instrumentation

➔ Today's systems are complex

◆ Difficult to predict failure modes

◆ Need a lot of information and history to troubleshoot

◆ Don't know what metrics you'll really need

➔ Better to instrument as code is written

➔ Identitfy patterns and structures, make it a habit

Culture of Instrumentation

➔ Yes, it generates a lot of data, but that's ok
◆ Ingest is a solved problem now

◆ Need scalable and real-time analytics

➔ Make it your culture:
◆ Instrument as you go

◆ Be consistent and follow your metadata model

◆ Know that you'll get the answers you seek

Tales of Timeseries
Practical Custom Metrics Examples

Cache Hit Ratio
metrics.register("cache.size", cache::size);

public synchronized V get(K key) {

 V value = cache.get(key);

 if (value != null) {

 metrics.counter("cache.hits").inc();

 return value;

 }

 value = backend.load(key);

 cache.put(key, value);

 metrics.counter("cache.misses").inc();

 return value;

}

Cache Hit Ratio
hits = data('cache.hits')

misses = data('cache.misses')

(100 * hits / misses).publish('hit ratio')

hits = data('cache.hits').sum(by='customer')

misses = data('cache.misses').sum(by='customer')

(100 * hits / misses).mean(over='5m').bottom(5).publish('hit ratio by customer')

Logging Insights with Metrics
public FilterReply decide(Marker marker, Logger logger, Level level,

 String format, Object[] params, Throwable t) {

 // Count logging messages by level (memoizing the counter)

 counters.computeIfAbsent(level, (level) -> metrics.counter(

 "logging.messages",

 "level", level.name().toLowerCase())).inc();

 // If an exception was also passed to the log statement, count those by class name.

 if (t != null) {

 metrics.counter("logging.exceptions", "class", t.getClass().getSimpleName()).inc();

 }

 return FilterReply.NEUTRAL;

}

Logging Insights with Metrics
data('logging.messages', rollup='sum') # To get sum of increments instead of rate

 .sum(by='service')

 .sum(over='1w')

 .top(1).publish()

➔ Not as flexible, but still a high-value signal

➔ Helps reduce time to clue / resolution

Commit SHAs In Production
metrics.registerGauge(

 "build_info.commit",

 "sha", buildInfo.getCommitSHA(),

 "canary", buildInfo.isCanary(),

 () -> 1);

➔ Started as just "let's report timeseries for this"

➔ Ended up powering an important CI/CD check

Extra: Threadpool Monitoring
If time allows...

➔ Gauges:

◆ Thread pool size

◆ Task queue depth

➔ Counters:

◆ Tasks submitted, executed, failed

➔ Timers:

◆ Task start delay

◆ Task execution time

Conclusion
Takeaways & Questions

