
How Serverless Changes
the IT Department

Paul Johnston
Opinionated Serverless Person

“Serverless all the things”

Medium/Twitter: @PaulDJohnston
Velocify Conf London 2018

Paul Johnston
Experienced Interim CTO and Serverless
Consultant

Environmentalist #ClimateChange bit.ly/2024wp

Twitter/Medium @PaulDJohnston

Ex-AWS Senior Developer Advocate for
Serverless

Co-founder ServerlessDays (formerly JeffConf)

https://bit.ly/2024wp

Cloud, Data Centres and Energy

Future of Cloud and Climate
Data Centres at least 2% of Global Carbon Emissions (bigger than aviation)

Growth of Cloud/Data Centres likely to grow by at least 5x in next 7 years

Efficiency is irrelevant due to Jevons Paradox - increased efficiency leads to
increased demand

Not just climate, but energy security - energy price rises

Whitepaper written by Anne Currie and myself bit.ly/2024wp

https://bit.ly/2024wp

Ethics Whitepaper - The State of Data Centre
Energy Use in 2018

Background - Movivo
CTO of Movivo in 2015

One of the first Serverless startups

Android App + AWS Lambda

By early 2017 was in 20+ countries with over
500,000 MAU

AWS bill was ~$300/month (half data backup)

Team of 2 serverless and 2 android developers in
total

What is Serverless?

Not FaaS*
*Not just FaaS

(although FaaS is important for most serverless implementations)

Not -insert favourite FaaS platform
here-*

*Again not just FaaS

Serverless is Inherently
Event Driven

And
Asynchronous*

*Consequence of FaaS and Queues

Definition of Serverless

“A Serverless solution is one that
costs you nothing to run if nobody is
using it, excluding data storage.”

Me - September 2017

Serverless is
Economic

not Technological

So Serverless is about
Business

not
Technology*

*Consequence of CTO thinking

So why does this matter
for an IT Department?

1) Organisations don’t like uncertainty

2) No such thing as a
“standard IT Department”

So how does serverless get in?

Serverless entry point 1:
Greenfield projects e.g. startups

Serverless entry point 2:
By stealth e.g. that lambda function

Serverless will get in*
*it probably already is

In terms of actual resources...

Many many more resources

Fewer lines of code…?

Fewer lines of executable code

So how do you manage it?

Managing Serverless: Some Questions
How do you build a serverless team?

Do you manage tasks differently?

What are the key qualities of a serverless engineer?

Managing Serverless: Putting it another way
What does it mean to use a Serverless approach

...for engineering

...and for the way you manage projects

...and teams?

Is going serverless like herding cats?

Answer?
“It’s almost exactly the same [as normal software development]” - Ben Kehoe

(Is this the end of my talk?)

Managing Serverless Development...
...is not the same as managing normal software projects.

At least not completely the same (in my opinion)

There are some special aspects

Because I’ve been a CTO...
Perspective is different

Pragmatist - keep it simple

Strategist - business directs tech

DON’T ASK ME TO CODE! (I can, but there are better people to do it)

Best Practices for Development

Best Practices
No-one is ever 100% using best practices (but that’s the aim)

These are some things you should be doing anyway…

Best Practices (ok… Good Practices)
Daily Standups (can be virtual)

Pair Programming

Version Control

CI/CD (they are not the same thing!)

Testing

Code Reviews

etc… (not exhaustive)

Serverless = Cloud 2.0

Serverless = Cloud 2.0

THE SECOND COMING

OF CLOUD

It’s about No Maintenance Automation
Avoiding maintenance comes out of Automation…

So Automate all the things

And remember to maintain your automation (because nobody else will)

Serverless Best Practices

Serverless Best Practices
Serverless Best Practices blog:
https://bit.ly/serverlessbestpractices `

https://bit.ly/serverlessbestpractices

Each function should do only one
thing

Functions don’t call other functions

Use as few libraries in your functions
as possible (preferably zero)

Avoid using connections based
services e.g. RDBMS

Serverless Best Practices
One function per route (if using
HTTP)

Data flows not data lakes

Learn to use messages and queues
(async FTW)

Just coding for scale is a mistake,
you have to consider how it scales

What do these differences mean for

...Managing Teams?

...Individual Skillsets?

Serverless Solutions

FaaS
Each function is a high value unit

Functions != features

With FaaS/Serverless it’s Cloud Architecture not Software Architecture

FaaS: Skillsets
Doer: Get it working

Tester: Just TDD/BDD please

Cloud First: Do as little as possible in code

Under Engineer-er: Don’t make it complicated, make it work - nobody cares if it’s
perfect as the quality impact is far less important than in a monolith

FaaS: Team
Kanban: Tasks and tiny code units work very well (Scrums + Sprints less so)

Discipline: Everyone on top of priorities

Pair Programming: This seems to work really well here. Tiny Code bases seems
to enhance this

Feature Velocity: Good discipline/testing leads to high feature velocity (not code
releases)

Principled Architecture: If you have clear architecture principles, you can move
incredibly fast

Events and Queues
Different Architecture for most coming from Web - not request-response

Asynchronous for most things by default

Distributed systems

Nuanced

Fast Learner: If new to this space

All Rounder: Cannot do FaaS without this. Not “someone else’s job”

Cloud First: Recognising what to use and when

Communicator: Explaining event driven systems is hard. Documenting/explaining
is key

Events and Queues: Skillsets

Events and Queues: Team
Principled Architecture: Build up principles of how to use what type of queue/event
and when (push, pull, volume etc)

Shared Knowledge: Communicate what you’re doing individually, but sharing
architecture understanding is key. Have a process (see Principled Architecture)

Constant Review: Often events and triggers already exist within a system.
Recognise when to reuse and when to create new

Services
Learn to use Services

Much less likely to “Roll your own” (containers, open source)

Already use many services so expand e.g. Analytics, Logging

Integrator: Learn to be an integrator of services. It’s key.

Pragmatist: Recognise that the service is probably built and run by somebody who
knows more about this than you do

Cloud First: Recognising what to use and when

Under Engineer-er: Simply let others do the heavy lifting

Services: Skillsets

Pragmatic Approach: You can probably build 80% of services you use, but why
would you?

Document: Why do you use the service? What is missing?

Support: Do not let one person be the point of contact for a service you use. Share
the knowledge

Security: Learn best practices over api keys and shared secrets (outside the repo
is rule #1)

Services: Team

Infrastructure as Code
Most important aspect

Almost impossible to do Serverless at even moderate scale without it

Terraform, SAM, CloudFormation, Architect, stdlib, Serverless Framework, etc

Automater: Every engineer should be an automater as a matter of principle (bash,
scripts, CI/CD etc). Every release should automate more

All Rounder: Dev and Ops distinctions disappear. Everybody is everything. True
(non-siloed) Engineering at that point

Doer: Role << Responsibility

Fast Learner: New services released almost daily. Need to be able to add in.

Infrastructure as Code: Skillsets

Automation: Most important automation.

Collaborative Deployment: Serverless tends towards much high number of
deployments. Need great communication skills and understanding of canarying,
blue/green deployment etc.

Feature Velocity: It’s only a feature when it’s deployed. Code != Features.
Uncoupled Logic

Team Scale: You cannot achieve team scale without good Infrastructure as Code
and CI/CD

Infrastructure as Code: Team

Impact: Hiring
Much broader skillset

More “Engineering” than “Developing”

Interviewing: Code Challenges? How do you interview? Primary skills are actually
collaboration and ability to learn fast.

Onboarding: ...is hard - Nordstrom. May be easier to hire juniors and upskill than
hire seniors and reskill.

Impact: Upskilling
Much broader skillsets

Learning resources are fewer and relatively limited by use case - AWS, A Cloud
Guru etc

Ingrained thinking may be problematic

More junior = better?

Senior leadership still needed but more as mentors (feature velocity)

Impact: Remove Naysayers
Naysayers can be time drains

Remove or Repurpose

Velocity of team is such that this can significantly decrease productivity

Impact: Roles << Responsibilities
Jobs will change over time

Within serverless engineering Dev and Ops merge, as does Sec and everything
else

“Cloud Native Engineers”

How does Serverless change the IT Department?
Serverless is not the future, it’s already here

Your IT Department will change

How does Serverless change the IT Department?
Fewer 10x-ers, more mentors

Increases communication

Removes Silos - everyone is an
Engineer (no Dev and Ops silos)

Enforces Infrastructure as Code

People have Responsibilities not
Roles

Emphasis on Automation and
Deployment

Much higher Feature Velocity

Decreased reliance on code
perfection

Serverless Engineer
=

Cloud Native Engineer
(aka Pragmatic Hacker)

Serverless Team
=

Rapidly Collaborate +
Automate + Document

Serverless Team
=

Slack + Automate + Document

How Serverless Changes
the IT Department

Paul Johnston
“Serverless all the things”

Serverless Best Practices blog: https://bit.ly/serverlessbestpractices

Medium/Twitter: @PaulDJohnston
Velocify Conf London 2018

https://bit.ly/serverlessbestpractices

