Improving Productivity Using Real-Time Data

Jacomo Corbo (QuantumBlack)
Business & Industry, Mission City B4

Measuring productivity remains a notoriously difficult problem, nowhere more so perhaps than in innovation. Feedback on the progress of projects and the performance of workers is scant, highly uncertain, and collected either too infrequently or too slowly. Yet such information is indispensable to the efficient allocation of resources to innovation projects. These challenges are all the more acute for companies involved in complex product development, where performance hinges critically on an organization’s capacity to constantly and consistently innovate. At the same time, information captured by enterprises has generally gone from scarce to superabundant, affording them an unprecedented opportunity to monitor information flows, observe worker interactions and organizational structures, and estimate individual and organizational performance.

We will discuss how companies are using data to obtain sharper, more timely insights. Specifically, we will present how real-time information about engineering collaborations are being leveraged to measure, model, and ultimately forecast organizational productivity and project performance with a level of accuracy and timeliness heretofore impossible. Over the past couple of years, QuantumBlack has developed and deployed an analytics tool to help companies in a variety of industries, from aerospace and automotive to software and semiconductor manufacturing, improve the yield of their project investments. The software tracks and analyses real-time communication and collaboration data, as well as data on performance metrics related to tasks and projects under assessment, to forecast organizational productivity, predict the success or failure of projects, identify performance bottlenecks and drivers, and ultimately help optimize resource and work allocation strategies.

The talk will center on case studies involving successful deployments at several Formula One (F1) teams. We will show how we were able to forecast the productivity of innovation teams, improve investment yields by as much as 15%, and raise productivity by nearly 20%. Certainly, this is no free lunch and we will dwell on some of the more important difficulties: the technological and computing challenges associated with machine-learning and real-time analysis of a transient data set that can grow at the rate of several terabytes per day, some of the privacy issues associated with trawling employee communications even if by machine-only readers, and finally some of the cultural and management challenges that we and our clients faced in deploying a capability that forecasts individual and organizational performance. By the same token, there is a great deal that enterprises can do to help build and facilitate the adoption of analytical capabilities within their ranks. After all, and as we will show, the returns certainly warrant the effort.

Photo of Jacomo Corbo

Jacomo Corbo


Jacomo Corbo is the chief scientist for QuantumBlack, a visual analytics firm that helps clients meet the analysis challenges of big data to make better decisions. Corbo is also the Canada Research Chair in Information and Performance Management at the University of Ottawa, and a Wharton Clayright Scholar at the University of Pennsylvania’s Wharton School of Business. His research has been funded by grants from the National Research Council, the Alfred P. Sloan Foundation, the Wharton Mack Center for Technological Innovation, the Wharton Customer Analytics Initiative, as well as by companies such as GE Finance and IBM.

Between January 2006 and June 2008, Corbo served as race strategist and subsequently as chief race strategist for the Renault F1 Team Ltd.

Corbo holds a Ph.D. from the Department of Computer Science at Harvard University, an S.M. in Applied Mathematics from the Harvard Graduate School of Engineering and Applied Sciences, and a B.Eng. in Electrical Engineering from McGill University.


  • EMC
  • Microsoft
  • HPCC Systems™ from LexisNexis® Risk Solutions
  • MarkLogic
  • Shared Learning Collaborative
  • Cloudera
  • Digital Reasoning Systems
  • Pentaho
  • Rackspace Hosting
  • Teradata Aster
  • VMware
  • IBM
  • NetApp
  • Oracle
  • 1010data
  • 10gen
  • Acxiom
  • Amazon Web Services
  • Calpont
  • Cisco
  • Couchbase
  • Cray
  • Datameer
  • DataSift
  • DataStax
  • Esri
  • Facebook
  • Feedzai
  • Hadapt
  • Hortonworks
  • Impetus
  • Jaspersoft
  • Karmasphere
  • Lucid Imagination
  • MapR Technologies
  • Pervasive
  • Platform Computing
  • Revolution Analytics
  • Scaleout Software
  • Skytree, Inc.
  • Splunk
  • Tableau Software
  • Talend

For information on exhibition and sponsorship opportunities at the conference, contact Susan Stewart at

For information on trade opportunities with O'Reilly conferences contact Kathy Yu at mediapartners

For media-related inquiries, contact Maureen Jennings at

View a complete list of Strata contacts