Sep 23–26, 2019

Serverless Streaming Architectures and Algorithms for the Enterprise

Arun Kejariwal (Facebook), Karthik Ramasamy (Streamlio)
9:00am12:30pm Tuesday, September 24, 2019
Location: 1E 09
Secondary topics:  Cloud Platforms and SaaS, Data, Analytics, and AI Architecture, Streaming and IoT, Temporal data and time-series analytics

Who is this presentation for?

Practitioners in the industry

Level

Intermediate

Description

In recent years, serverless has gained momentum in the realm of cloud computing. Broadly speaking, it comprises of FaaS (Function-as-a-Service) and BaaS (Backend-as-a-Service). The distinction between the two is the following – under Faas, one writes and maintains the code (e.g., the functions) for serverless compute; in contrast, under BaaS, the platform provides the functionality and manages the operational complexity behind it. Serverless provides a great means to boost development velocity. With greatly reduced infrastructure costs, more agile and focused teams, and faster time to market, enterprises are increasingly adopting serverless approaches to gain a key advantage over their competitors.

Example early use cases of serverless include, for example, data transformation in batch and ETL scenarios and data processing using MapReduce patterns. As a natural extension, serverless is being used in the streaming context such as, but not limited to, real-time bidding, fraud detection, intrusion detection. Serverless is, arguably, naturally suited to extracting insights from fast data, i.e., high volume, high velocity data. Example tasks in this regard include filtering and reducing noise in the data, leveraging machine learning and deep learning models to provide continuous insights about business operations.

In this tutorial, we shall walk the audience through the landscape of streaming systems for each stage of an end-to-end data processing pipeline — messaging, compute, and storage. Then, we shall overview the inception and growth of the serverless paradigm. Next, we shall present a deep dive of Apache Pulsar which provides native serverless support in the form of Pulsar functions and paint a bird’s eye view of the application domains where Pulsar functions can be leveraged.

Baking in intelligence in a serverless flow is paramount from a business perspective. To this end, we shall detail different serverless patterns – event processing, machine learning and analytics – for different use cases and highlight the trade-offs. We shall conclude by offering perspectives on how advances in hardware technology and the emergence of new applications will impact the evolution of serverless streaming architectures and algorithms.

Topics include:

  • An introduction to streaming
  • An introduction to serverless
  • Serverless & Streaming Requirements
  • Apache Pulsar
  • Application domains
  • Serverless Event Processing Patterns
  • Serverless Machine Learning Patterns
  • Serverless Analytics Patterns

Prerequisite knowledge

The tutorial shall be self-contained.

Materials or downloads needed in advance

NA

What you'll learn

The audience will walk away with an in-depth overview of serverless for streaming and how to leverage different technologies and algorithms for a wide variety of use cases.
Photo of Arun Kejariwal

Arun Kejariwal

Facebook

Until recently, Arun Kejariwal was a statistical learning principal at Machine Zone (MZ), where he led a team of top-tier researchers and worked on research and development of novel techniques for install and click fraud detection and assessing the efficacy of TV campaigns and optimization of marketing campaigns. In addition, his team built novel methods for bot detection, intrusion detection, and real-time anomaly detection. Previously, Arun worked at Twitter, where he developed and open-sourced techniques for anomaly detection and breakout detection. His research includes the development of practical and statistically rigorous techniques and methodologies to deliver high-performance, availability, and scalability in large-scale distributed clusters. Some of the techniques he helped develop have been presented at international conferences and published in peer-reviewed journals.

Photo of Karthik Ramasamy

Karthik Ramasamy

Streamlio

Karthik Ramasamy is the cofounder of Streamlio, a company building next-generation real-time processing engines. Karthik has more than two decades of experience working in parallel databases, big data infrastructure, and networking. Previously, he was engineering manager and technical lead for real-time analytics at Twitter, where he was the cocreator of Heron; cofounded Locomatix, a company that specialized in real-time stream processing on Hadoop and Cassandra using SQL (acquired by Twitter); briefly worked on parallel query scheduling at Greenplum (acquired by EMC for more than $300M); and designed and delivered platforms, protocols, databases, and high-availability solutions for network routers at Juniper Networks. He is the author of several patents, publications, and one best-selling book, Network Routing: Algorithms, Protocols, and Architectures. Karthik holds a PhD in computer science from the University of Wisconsin-Madison with a focus on databases, where he worked extensively in parallel database systems, query processing, scale-out technologies, storage engines, and online analytical systems. Several of these research projects were spun out as a company later acquired by Teradata.

Leave a Comment or Question

Help us make this conference the best it can be for you. Have questions you'd like this speaker to address? Suggestions for issues that deserve extra attention? Feedback that you'd like to share with the speaker and other attendees?

Join the conversation here (requires login)

Contact us

confreg@oreilly.com

For conference registration information and customer service

partners@oreilly.com

For more information on community discounts and trade opportunities with O’Reilly conferences

strataconf@oreilly.com

For information on exhibiting or sponsoring a conference

Contact list

View a complete list of Strata Data Conference contacts