Sep 23–26, 2019

Toward more fine-grained sentiment and emotion analysis of text

Gerard de Melo (Rutgers University)
2:55pm3:35pm Wednesday, September 25, 2019
Location: 3B - Expo Hall

Who is this presentation for?

  • Developers working with textual data and research staff

Level

Intermediate

Description

When consumers see a piece of text, it can be difficult to know what kinds of sentiment and emotions they associate with it. While there’s a long history of sentiment analysis, Gerard de Melo dives into a series of results on data-driven approaches to provide a more multifaceted and fine-grained understanding of these associations.

Gerard first focuses on sentiment, that is, the methods to detect whether a text is perceived as more positive or negative. The key novelty involves using simple vector representations that capture more fine-grained sentiment information. For instance, the word “hot” is often positive when referring to music, but tends to be negative when referring to the temperature in a hotel room. Using simple techniques, you can create sentiment vector representations that capture such differences between different contexts. These can then readily be exploited by machine learning approaches such as deep neural networks, allowing better analysis of products, hotels, and restaurants, not only in English but in numerous other languages.

You’ll then explore emotions and the perception of text. While there are several psychological theories of emotion, data-driven approaches can provide detailed ratings that reveal to what extent a given word on average evokes a specific emotion. You can then connect these ratings with further data to automatically recommend appropriate fonts and color palettes to use when presenting specific pieces of information. For example, certain fonts and colors are perceived as more exciting, while others are more likely to convey trustworthiness. You’ll then be able to make informed choices that better accord with marketing-based desiderata.

Overall, these methods open up new opportunities for organizations to pay attention to what is being said about them in different markets and to make smarter choices when presenting information to consumers.

What you'll learn

  • Understand how to induce context-specific sentiment and emotion information, how fonts and colors can convey specific emotions, and how to use freely available resources (without having to reproduce the work)
Photo of Gerard de Melo

Gerard de Melo

Rutgers University

Gerard de Melo is an assistant professor of computer science at Rutgers University, where he heads a team of researchers working on big data analytics, natural language processing, and web mining. Gerard’s research projects include UWN/MENTA, one of the largest multilingual knowledge bases, and Lexvo.org, an important hub in the web of data. Previously, he was a faculty member at Tsinghua University, one of China’s most prestigious universities, where he headed the Web Mining and Language Technology Group, and a visiting scholar at UC Berkeley, where he worked in the ICSI AI Group. He serves as an editorial board member for Computational Intelligence, the Journal of Web Semantics, the Springer Language Resources and Evaluation journal, and the Language Science Press TMNLP book series. Gerard has published over 80 papers, with best paper or demo awards at WWW 2011, CIKM 2010, ICGL 2008, and the NAACL 2015 Workshop on Vector Space Modeling, as well as an ACL 2014 best paper honorable mention, a best student paper award nomination at ESWC 2015, and a thesis award for his work on graph algorithms for knowledge modeling. He holds a PhD in computer science from the Max Planck Institute for Informatics.

    Contact us

    confreg@oreilly.com

    For conference registration information and customer service

    partners@oreilly.com

    For more information on community discounts and trade opportunities with O’Reilly conferences

    strataconf@oreilly.com

    For information on exhibiting or sponsoring a conference

    pr@oreilly.com

    For media/analyst press inquires