Presented By O’Reilly and Cloudera
Make Data Work
September 11, 2018: Training & Tutorials
September 12–13, 2018: Keynotes & Sessions
New York, NY
Bruno Goncalves

Bruno Goncalves
President, Data For Science, Inc

Website | @bgoncalves

Bruno Gonçalves is currently a Senior Data Scientist working at the intersection of Data Science and Finance. Previously, he was a Data Science fellow at NYU’s Center for Data Science while on leave from a tenured faculty position at Aix-Marseille Université. Since completing his PhD in the Physics of Complex Systems in 2008 he has been pursuing the use of Data Science and Machine Learning to study Human Behavior. Using large datasets from Twitter, Wikipedia, web access logs, and Yahoo! Meme he studied how we can observe both large scale and individual human behavior in an obtrusive and widespread manner. The main applications have been to the study of Computational Linguistics, Information Diffusion, Behavioral Change and Epidemic Spreading. In 2015 he was awarded the Complex Systems Society’s 2015 Junior Scientific Award for “outstanding contributions in Complex Systems Science” and in 2018 is was named a Science Fellow of the Institute for Scientific Interchange in Turin, Italy.


1:30pm–5:00pm Tuesday, 09/11/2018
Location: 1A 12/14 Level: Intermediate
Secondary topics:  Deep Learning, Temporal data and time-series analytics
Bruno Goncalves (Data For Science, Inc)
Average rating: ***..
(3.14, 7 ratings)
Time series are everywhere around us. Understanding them requires taking into account the sequence of values seen in previous steps and even long-term temporal correlations. Join Bruno Gonçalves to learn how to use recurrent neural networks to model and forecast time series and discover the advantages and disadvantages of recurrent neural networks with respect to more traditional approaches. Read more.