Presented By O’Reilly and Cloudera
Make Data Work
September 11, 2018: Training & Tutorials
September 12–13, 2018: Keynotes & Sessions
New York, NY
Holden Karau

Holden Karau
Developer Advocate, Google

@holdenkarau

Holden Karau is a transgender Canadian open source developer advocate at Google focusing on Apache Spark, Beam, and related big data tools. Previously, she worked at IBM, Alpine, Databricks, Google (yes, this is her second time), Foursquare, and Amazon. Holden is the coauthor of Learning Spark, High Performance Spark, and another Spark book that’s a bit more out of date. She’s a committer on the Apache Spark, SystemML, and Mahout projects. When not in San Francisco, Holden speaks internationally about different big data technologies (mostly Spark). She was tricked into the world of big data while trying to improve search and recommendation systems and has long since forgotten her original goal. Outside of work, she enjoys playing with fire, riding scooters, and dancing.

Sessions

1:30pm–5:00pm Tuesday, 09/11/2018
Location: 1E 09 Level: Intermediate
Secondary topics:  Model lifecycle management
Brian Foo (Google), Holden Karau (Google), Jay Smith (Google)
Average rating: **...
(2.00, 7 ratings)
TensorFlow and Keras are popular libraries for training deep models due to hardware accelerator support. Brian Foo, Jay Smith, and Holden Karau explain how to bring deep learning models from training to serving in a cloud production environment. You'll learn how to unit-test, export, package, deploy, optimize, serve, monitor, and test models using Docker and TensorFlow Serving in Kubernetes. Read more.
11:20am–12:00pm Thursday, 09/13/2018
Location: 1A 21/22 Level: Intermediate
Holden Karau (Google), Rachel Warren (Salesforce Einstein), Anya Bida (Salesforce)
Average rating: ****.
(4.00, 2 ratings)
Apache Spark is an amazing distributed system, but part of the bargain we've made with the infrastructure deamons involves providing the correct set of magic numbers (aka tuning) or our jobs may be eaten by Cthulhu. Holden Karau, Rachel Warren, and Anya Bida explore auto-tuning jobs using systems like Apache BEAM, Mahout, and internal Spark ML jobs as workloads. Read more.