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Agenda

1) The Machine Learning Workflow
2) Motivation for Zipline (the problem)
3) Zipline implementation (the solution)
4) Deep dive (technical)



Team Mission

Equip Airbnb with shared technology to build 
production-ready ML applications with no 

incidental complexity.



The Machine Learning Workflow
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Zipline in the ML Production Workflow
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Motivation



“I spend 60% of my time generating training data”

“My backfill is running.”

Backfilling.



We already have a data warehouse

● We have data

● Defining new pipelines is easy enough 
(business analysts do it all the time)

● We already built a lot of tooling for all that

● Why build something new?

Why do we even need Zipline?



Motivating Example – Likelihood to book

● Predict likelihood to book when a user 
views an experience

● Example feature: sum of prior bookings in
past 7 days
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Limitations of a standard warehouse for Machine Learning:
Bound to daily accuracy

Data warehouse (human consumption)

User date Sum of 
bookings

123 2018-01-01 1

123 2018-01-02 3

ML use case (machine consumption)

User time Sum of 
bookings

123 2018-01-01 
11:15:24.142

Is it 0 or 1?

123 2018-01-02 
18:15:24.142

Is it 2 or 3?



Limitations #1 of a standard warehouse for Machine Learning:
Bound to daily accuracy

User date Sum of 
bookings

123 2018-01-01 1

123 2018-01-02 3

ML use case (machine consumption)

User time Sum of 
bookings

Sum of 
bookings in 
past 12hrs

123 2018-01-01 
11:15:24.14

2

Is it 0 or 1? ???

123 2018-01-02 
18:15:24.14

2

Is it 2 or 3? ???

Data warehouse (human consumption)
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Why does this matter so much?

Just use the end of day value?



Why does this matter so much?

Just use the end of day value?

● Label leakage: “My model performs 
well on the test data, but not in 
production. I don’t know how to 
debug.”

Just use the start of day value?



Why does this matter so much?

Just use the start of day value?

● You deprive your model of recent 
data

● Ex feature: number of searches in 
the past 24 hours.

Just use the end of day value?

● Label leakage: “My model performs 
well on the test data, but not in 
production. I don’t know how to 
debug.”



If you missed that…

Point in time correctness is important and hard



We already have a production database

Production DB serves Airbnb.com just fine, surely it can handle “online” scoring
traffic too?

Why do we even need Zipline?

1. Number of searches in the past 30 days? Not in prod DB.
2. Sum of bookings in past year. airbnb.com goes down.



We already have a production database

● We need the exact same data when training and scoring

Why do we even need Zipline?
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“My model performs well on the test data, but
not in production. I don’t know how to debug.”



If you missed that again…

Point in time correctness
Consistent data across training/scoring

+ Data quality and monitoring
+ Sharing and discovery



The Solution



Time Travel
Zipline puts a time machine on your data warehouse

Your data warehouse Your data warehouse with Zipline



Training/Predicting Consistency Guaranteed
Zipline travels through time and space
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Other requirements

• Monitoring
• Sharing
• Integrate smoothly with the bigger picture ML workflow (see bighead)



User Interface



Feature Sharing and Discovery

1. Searchable
2. Easily understandable
3. Find outliers
4. Identify transformations
5. Shopping cart



Features Definition (Time Travel)

1. Count the bookings 
2. Average their values
3. 7d, 14d, 30d, 180d, 1y exact windows



Features Definition (Time Travel)
You define features in a way that allows point in time correct computations



Features Definition (Time Travel)

• Now Zipline knows how to 
time travel that feature… What 
happens next?

• Nothing! Until someone asks
for a point in time computation 
(what is the value for this user 
at this time).

• ZiplineSource API



Features Definition (Time Travel)

user listing time

123 567 2018-01-01 12:23:23.123

234 678 2018-01-01 22:11:22.321

345 789 2018-01-02 01:45:55.891

User provides this 



Features Definition (Time Travel)

user listing time bookings_sum_7d bookings_sum_14d

123 567 2018-01-01 ... 1 2

234 678 2018-01-01 … 4 4

345 789 2018-01-02 … 0 1

User provides this Zipline fills in this



Features Definition (iteration)

• Schema change? Don’t worry about it
• Bugfixed a feature? There’s an API for that

Old training Set

Ti
m

e

Features

New feature gets 
efficient backfill

Incremental data only 
on old features



If you missed that again…

training set = f(features, primary keys, 
timestamps)
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Zipline in the ML Iteration Workflow

What does this 
connection look like?



Zipline in the ML Iteration Workflow

ZiplineSource Bighead

Daily request to get_{training/scoring}_dataframe()

1. You build your Bighead model with a ZiplineSource
2. Configure it for daily training/scoring



Zipline in the production workflow

• Bighead knows about your ZiplineSource
• ZiplineSource knows about your features



Zipline in the production workflow

Scoring Request Prediction 
service

Zipline

{user=123,
listing=345, 
ZiplineSource=bl_source}

{booking_count_7d=1, 
search_count_30d=3,
…}

• Scoring requests only require primary key vectors (not feature vectors)

{model=boking_likelihood,
user=123,
listing=345}

{prob=0.8}



If you missed that again…

Features are the same in all environments



Further Technical Details



Train/Predict data consistency

Feature 
definition

Batch
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Zipline Client Bighead
*Daily

*Continuous

KV Store

Lambda Architecture

Production 
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Time travel
How to do it efficiently

• Making this fast pays off
• Can get very expensive (many timestamps x many events)
• Skew is the enemy
• Caching partial aggregates can help
• Exact windows make it tricky



Time traveling on production DBs
Processing binlogs

• Daily dumps of production tables
• Lack of intra-day accuracy
• Zipline can ingest transaction logs
• Mutable events are tricky



Summary: Zipline is…

Time travel
Consistency

Data quality and monitoring
Searchable and sharable

Integrated with end-to-end workflow



Drumroll…



Open Sourcing Q1 2019

Reach out to andrew.hoh@airbnb.com for 
more info

mailto:andrew.hoh@airbnb.com


Questions



Appendix



ZiplineSource API

ZiplineSource is a python API with two primary user facing functions
1. Get training dataframe (arguments for sampling, time ranges, etc.)
2. Get scoring dataframe (arguments for sampling, time ranges, etc.)


