
The Evolution of Netflix’s S3
Data Warehouse

Ryan Blue & Dan Weeks
September 2018 - Strata NY

Overview

● Netflix Architecture

● S3 Data Warehouse

● Iceberg Tables

● What’s Next

Netflix Architecture

September 2018 - Strata NY

Cloud native data warehouse

● Separate Compute and Storage

● Isolate Different Workloads

● Single Source of Truth

Architectural Principles

● S3 as storage layer
○ Metadata in Hive Metastore

● EC2 as compute layer
○ Hadoop + YARN

● Spark, Presto (and a little Hive and Pig)

Tech Stack

S3 Data Warehouse

September 2018 - Strata NY

Hadoop file system
compatibility with S3

S3HDFS
create()

open()

listStatus()

delete()

rename()

REST.PUT.OBJECT

REST.GET.OBJECT

REST.GET.BUCKET

REST.DELETE.OBJECT

REST.COPY.OBJECT +
REST.DELETE.OBJECT

S3 as a File System

What about performance?

● Performance
○ Individual operations take longer
○ Some operations do not map cleanly
○ Break contracts to optimize

● Commit Path
○ Relies on expensive rename
○ Creates multiple copies with versioning

Performance & Compatibility

● The “batch” pattern
○ Never delete data as part of a job
○ Always write data to new paths
○ Atomically swap data locations

● S3 Committer
○ Use features like multi-part upload
○ Allows for “append” support

Optimizing Commits

What about consistency?

● Overlay a consistent view of metadata
○ Track file system metadata externally
○ Expire old metadata and rely on S3

● Check listings against consistent system
○ Fail or delay until view is consistent
○ Manually resolve collisions

Consistent Listing (s3mper)

● Maintenance Cost is High
○ Custom changes per execution engine
○ Never implemented in Presto or Hive
○ Behaviors differ slightly by implementation

● Platform issues are surfaced to users
○ Append is not atomic
○ Automatic overwrite
○ Table operations can be inconsistent

Challenges

● File System
○ Works around differences in behaviors
○ Trades correctness for fewer S3 calls

● s3mper
○ Works around S3 prefix-listing inconsistency

● S3 committers and Batch Pattern
○ Works around lack of atomic changes to file listings
○ Works around lack of cheap rename in S3
○ Needed to avoid using S3 file system for silly operations

Common Threads

Maybe the problem is using
S3 as a file system?

Why are we using S3 this way?

Iceberg

September 2018 - Strata NY

● Key idea: organize data in a directory tree

date=20180513/
 |- hour=18/
 | |- ...
 |- hour=19/
 | |- part-000.parquet

 | |- ...
 | |- part-031.parquet
 |- hour=20/
 | |- ...
 |- ...

Hive Table Design

● Filter by directories as columns
SELECT ... WHERE date = '20180513' AND hour = 19

date=20180513/
 |- hour=18/
 | |- ...
 |- hour=19/
 | |- part-000.parquet

 | |- ...
 | |- part-031.parquet
 |- hour=20/
 | |- ...
 |- ...

Hive Table Design

● Table state is stored in two places
○ Partitions in the Hive Metastore
○ Files in a FS with no transaction support

● Still requires directory listing to plan jobs
○ O(n) listing calls, n = # matching partitions
○ Eventual consistency breaks correctness

● Requires elaborate locking for “correctness”
○ Nothing respects the locking scheme

Design Problems

● Key idea: track all files in a table over time

○ A snapshot is a complete list of files in a table
○ Each write produces and commits a new snapshot

Iceberg’s Design

S1 S2 S3 ...

● Snapshot isolation without locking
○ Readers use a current snapshot
○ Writers produce new snapshots in isolation, then commit

● Any change to the file list is an atomic operation
○ Append data across partitions
○ Merge or rewrite files

Snapshot Design Benefits

S1 S2 S3 ...

R W

Design Benefits

● No expensive or eventually-consistent FS operations:
○ No directory or prefix listing
○ No rename: data files written in place

● Reads and writes are isolated and all changes are atomic

● Faster scan planning, distributed across the cluster
○ O(1) manifest reads, not O(n) partition list calls
○ Upper and lower bounds used to eliminate files

● Reliable CBO metrics

Iceberg replaces s3mper, batch
pattern, and S3 committers

Want more specifics?

Come to the Iceberg talk!

At 5:25 today in 1E09

What’s next?

September 2018 - Strata NY

● New to Hadoop? Big data is great! Just remember . . .
○ You need to know the physical layout of tables you read
○ Make sure you don’t write too many files – or too few
○ Appends are actually overwrites, except in Presto
○ Don’t write from Presto (but nothing will stop you)
○ You shouldn’t use timestamps or nested types
○ You can’t drop columns in CSV tables
○ And by CSV, we don’t really mean CSV
○ You can’t rename columns in JSON tables
○ If you rename columns in Parquet,

either Presto or Spark will work, but not both
○ . . .

Today: A narrow paved path

● Hidden partitioning
○ Partition filters derived from data filters
○ No more accidental full table scans

● Full schema evolution
○ Supports add, drop, and rename columns

● Reliable support for types
○ date, time, timestamp, and decimal
○ struct, list, map, and mixed nesting

While we’re fixing tables . . .

● Queries are not broken by layout changes

● Physical layout can evolve without painful migration
○ Mistakes can be fixed
○ Prototypes can move to production faster
○ Tables can change as volume grows over time

● Data Platform can transparently fix table layout

Table Layout is Hidden

● Any write is atomic – either complete or invisible
○ Rewrite files instead of partitions
○ Tables never have partially committed data

● Simple, built-in change detection
○ Cache and materialized view maintenance
○ Incremental processing

● Data Platform can monitor and fix data files
○ Compact small files
○ Repartition to a new layout

Snapshot-based Tables

● Common implementation for table operations
○ Write settings are per table, like row group size
○ Read defaults are set in one place, like split combination

● Simple data gathering
○ Log scan predicates and projection to Kafka
○ Recommend optimizations based on actual use

● Data Platform can automate tuning recommendations
○ Test file format tuning settings per table
○ Update table to affect all writes

Table Format Library

Questions?

September 2018 - Strata NY

Additional Iceberg Slides

September 2018 - Strata NY

● Historical Atlas data:
○ Time-series metrics from Netflix runtime systems
○ 1 month: 2.7 million files in 2,688 partitions
○ Problem: cannot process more than a few days of data

● Sample query:

select distinct tags['type'] as type
from iceberg.atlas
where
 name = 'metric-name' and
 date > 20180222 and date <= 20180228
order by type;

Case Study: Atlas

● Hive table – with Parquet filters:
○ 400k+ splits per day, not combined
○ EXPLAIN query: 9.6 min (planning wall time)

● Iceberg table – partition data filtering:
○ 15,218 splits, combined
○ 13 min (wall time) / 61.5 hr (task time) / 10 sec (planning)

● Iceberg table – partition and min/max filtering:
○ 412 splits
○ 42 sec (wall time) / 22 min (task time) / 25 sec (planning)

Case Study: Atlas Performance

● Implementation of snapshot-based tracking
○ Adds table schema, partition layout, string properties
○ Tracks old snapshots for eventual garbage collection

● Table metadata is immutable and always moves forward
● The current snapshot (pointer) can be rolled back

Iceberg Metadata

v1.json

S1 S2

v2.json

S1 S2 S3

v3.json

S2 S3

● Snapshots are split across one or more manifest files
○ Manifests store partition data for each data file
○ Reused to avoid high write volume

Manifest Files

v1.json

S1 S2

v2.json

S1 S2 S3

v3.json

S2 S3

m0.avro m1.avro m2.avro

● Basic data file info:
○ File location and format
○ Iceberg tracking data

● Values to filter files for a scan:
○ Partition data values
○ Per-column lower and upper bounds

● Metrics for cost-based optimization:
○ File-level: row count, size
○ Column-level: value count, null count, size

Manifest File Contents

● To commit, a writer must:
○ Note the current metadata version – the base version
○ Create new metadata and manifest files
○ Atomically swap the base version for the new version

● This atomic swap ensures a linear history

● Atomic swap is implemented by:
○ A custom metastore implementation
○ Atomic rename for HDFS or local tables

Commits

● Writers optimistically write new versions:
○ Assume that no other writer is operating
○ On conflict, retry based on the latest metadata

● To support retry, operations are structured as:
○ Assumptions about the current table state
○ Pending changes to the current table state

● Changes are safe if the assumptions are all true

Commits: Conflict Resolution

● Use case: safely merge small files
○ Merge input: file1.avro, file2.avro
○ Merge output: merge1.parquet

● Rewrite operation:
○ Assumption: file1.avro and file2.avro are still present
○ Pending changes:

Remove file1.avro and file2.avro
Add merge1.parquet

● Deleting file1.avro or file2.avro will cause a commit failure

Commits: Resolution Example

