The Evolution of Netflix’s S3
Data Warehouse

Ryan Blue & Dan Weeks
September 2018 - Strata NY

Overview

e Netflix Architecture
e S3 Data Warehouse
e |Iceberg Tables

e What’s Next

Netflix Architecture

September 2018 - Strata NY

Cloud native data warehouse

Architectural Principles

e Separate Compute and Storage
e Isolate Different Workloads

e Single Source of Truth

Tech Stack

e S3 as storage layer
o Metadata in Hive Metastore

e EC2 as compute layer
o Hadoop + YARN

e Spark, Presto (and a little Hive and Pig)

S3 Data Warehouse

September 2018 - Strata NY

Hadoop file system
compatibility with S3

S3 as a File System

HDFS

create()
open()
listStatus()
delete()

rename()

S3
REST.PUT.OBJECT
REST.GET.OBJECT
REST.GET.BUCKET

REST.DELETE.OBJECT

REST.COPY.OBJECT +
REST.DELETE.OBJECT

What about performance?

Performance & Compatibility

e Performance
o Individual operations take longer
o Some operations do not map cleanly
o Break contracts to optimize

e Commit Path
o Relies on expensive rename
o Creates multiple copies with versioning

Optimizing Commits

e The “batch” pattern
o Never delete data as part of a job
o Always write data to new paths
o Atomically swap data locations

e S3 Committer
o Use features like multi-part upload
o Allows for “append” support

What about consistency?

Consistent Listing (s3mper)

e Overlay a consistent view of metadata
o Track file system metadata externally
o Expire old metadata and rely on S3

e Check listings against consistent system
o Fail or delay until view is consistent
o Manually resolve collisions

Challenges

e Maintenance Cost is High
o Custom changes per execution engine
o Never implemented in Presto or Hive
o Behaviors differ slightly by implementation

e Platform issues are surfaced to users
o Append is not atomic
o Automatic overwrite
o Table operations can be inconsistent

Common Threads

e File System
o Works around differences in behaviors
o Trades correctness for fewer S3 calls

e s3mper
o Works around S3 prefix-listing inconsistency

e S3 committers and Batch Pattern
o Works around lack of atomic changes to file listings
o Works around lack of cheap rename in S3
o Needed to avoid using S3 file system for silly operations

Maybe the problem is using
S3 as a file system?

Why are we using S3 this way?

Iceberg

September 2018 - Strata NY

Hive Table Design

e Key idea: organize data in a directory tree

date=20180513/
|- hour=18/
| |- ...
|- hour=19/
| | - part-000.parquet
| |- ...
| | - part-031.parquet
|- hour=20/
| |- ...
|- ...

Hive Table Design

e Filter by directories as columns
SELECT ... WHERE date = '201806513' AND hour = 19

date=20180513/
|- hour=18/
| |- ...
|- hour=19/
| |- part-000.parquet
| |- ...
| | - part-031.parquet
|- hour=20/
| |- ...
|- ...

Design Problems

e Table state is stored in two places
o Partitions in the Hive Metastore
o Filesin a FS with no transaction support

e Still requires directory listing to plan jobs
o O(n) listing calls, n = # matching partitions
o Eventual consistency breaks correctness

e Requires elaborate locking for “correctness”
o Nothing respects the locking scheme

Iceberg’s Design

e Key idea: track all files in a table over time

o A snapshot is a complete list of files in a table
o Each write produces and commits a new snapshot

ST S2 S3 f ——————— ~ |

Snapshot Design Benefits

e Snapshot isolation without locking
o Readers use a current snapshot
o Writers produce new snapshots in isolation, then commit

S1 S2

e Any change to the file list is an atomic operation
o Append data across partitions
o Merge or rewrite files

Design Benefits

e No expensive or eventually-consistent FS operations:
o No directory or prefix listing
o No rename: data files written in place

Reads and writes are isolated and all changes are atomic
e F[aster scan planning, distributed across the cluster
o 0(1) manifest reads, not 0(n) partition list calls

o Upper and lower bounds used to eliminate files

e Reliable CBO metrics

Iceberg replaces s3mper, batch
pattern, and S3 committers

Want more specifics?
Come to the Iceberg talk!

At 5:25 today in 1E09

What’s next?

September 2018 - Strata NY

Today: A narrow paved path

e New to Hadoop? Big data is great! Just remember. ..

©)

O O O O O O O O

You need to know the physical layout of tables you read
Make sure you don’t write too many files — or too few
Appends are actually overwrites, except in Presto

Don’t write from Presto (but nothing will stop you)

You shouldn’t use timestamps or nested types

You can’t drop columns in CSV tables

And by CSV, we don’t really mean CSV

You can’t rename columns in JSON tables

If you rename columns in Parquet,

either Presto or Spark will work, but not both

While we’re fixing tables. ..

e Hidden partitioning
o Partition filters derived from data filters
o No more accidental full table scans

e Full schema evolution
o Supports add, drop, and rename columns

e Reliable support for types
o date, time, timestamp, and decimal
o struct, list, map, and mixed nesting

Table Layout is Hidden

e Queries are not broken by layout changes

e Physical layout can evolve without painful migration
o Mistakes can be fixed
o Prototypes can move to production faster
o Tables can change as volume grows over time

e Data Platform can transparently fix table layout

Snapshot-based Tables

e Any write is atomic — either complete or invisible
o Rewrite files instead of partitions
o Tables never have partially committed data

e Simple, built-in change detection
o Cache and materialized view maintenance
o Incremental processing

e Data Platform can monitor and fix data files
o Compact small files
o Repartition to a new layout

Table Format Library

e Common implementation for table operations
o Write settings are per table, like row group size
o Read defaults are set in one place, like split combination

e Simple data gathering
o Log scan predicates and projection to Kafka
o Recommend optimizations based on actual use

e Data Platform can automate tuning recommendations
o Test file format tuning settings per table
o Update table to affect all writes

Questions?

September 2018 - Strata NY

Additional Iceberg Slides

September 2018 - Strata NY

Case Study: Atlas

e Historical Atlas data:
o Time-series metrics from Netflix runtime systems
o 1month: 2.7 million files in 2,688 partitions
o Problem: cannot process more than a few days of data

e Sample query:

select distinct tags['type'] as type
from iceberg.atlas
where

name = 'metric-name' and

date > 20180222 and date <= 20180228
order by type;

Case Study: Atlas Performance

e Hive table — with Parquet filters:
o 400k+ splits per day, not combined
o EXPLAIN query: 9.6 min (planning wall time)

e Iceberg table — partition data filtering:
o 15,218 splits, combined
o 13 min (wall time) / 61.5 hr (task time) / 10 sec (planning)

e Iceberg table — partition and min/max filtering:
o 412 splits
o 42 sec (wall time)/ 22 min (task time) / 25 sec (planning)

Iceberg Metadata

e Implementation of snapshot-based tracking
o Adds table schema, partition layout, string properties
o Tracks old snapshots for eventual garbage collection

vl.]SOI’] V2 .json

aQm

e Table metadata is immutable and always moves forward
e The current snapshot (pointer) can be rolled back

S S2 S3

Manifest Files

e Snapshots are split across one or more manifest files
o Manifests store partition data for each data file
o Reused to avoid high write volume

N

o N 2 S
TeoN Lo -
N2 -
N LT
S\Vir
mo.avro

«:’
\\
mT.

//’
avro m2.avro

Manifest File Contents

e Basic data file info:
o File location and format
o Iceberg tracking data

e \alues to filter files for a scan:
o Partition data values
o Per-column lower and upper bounds

e Metrics for cost-based optimization:
o File-level: row count, size
o Column-level: value count, null count, size

Commits

e To commit, a writer must:
o Note the current metadata version — the base version
o Create new metadata and manifest files
o Atomically swap the base version for the new version

e This atomic swap ensures a linear history
e Atomic swap is implemented by:

o A custom metastore implementation
o Atomic rename for HDFS or local tables

Commits: Conflict Resolution

e \Writers optimistically write new versions:
o Assume that no other writer is operating
o On conflict, retry based on the latest metadata

e To support retry, operations are structured as:
o Assumptions about the current table state

o Pending changes to the current table state

e Changes are safe if the assumptions are all true

Commits: Resolution Example

e Use case: safely merge small files

o Merge input: filel.avro, file2.avro
o Merge output: mergel.parquet

e Rewrite operation:

o Assumption: filel.avro and file2.avro are still present

o Pending changes:
Remove filel.avro and file2.avro
Add merge1.parquet

e Deleting filel.avro or file2.avro will cause a commit failure

