Jacob Schreiber offers an overview of pomegranate, a flexible probabilistic modeling package implemented in Cython for speed. Jacob explores the models it supports, such as Bayesian networks and hidden Markov models, and demonstrates that these models are both faster and more flexible than other implementations in the open source community, such as NumPy, SciPy, scikit-learn, and hmmlearn.
Jacob also explains how to utilize the underlying modularity of the code to stack these models to produce more complicated ones such as mixtures of Bayesian networks or HMMs with complicated mixture emissions and shows how easy it is to use the built-in out-of-core and parallel APIs to allow for multithreaded training of complex models on massive amounts of data which can’t fit in data—all without the user having to think about any implementation details.
Jacob Schreiber is a third-year CSE PhD student and IGERT big data fellow at the University of Washington. Jacob is a core developer for the popular Python machine learning package sklearn and the author of a probabilistic modeling Python package pomegranate.
For exhibition and sponsorship opportunities, email strataconf@oreilly.com
For information on trade opportunities with O'Reilly conferences, email partners@oreilly.com
View a complete list of Strata Data Conference contacts
©2017, O'Reilly Media, Inc. • (800) 889-8969 or (707) 827-7019 • Monday-Friday 7:30am-5pm PT • All trademarks and registered trademarks appearing on oreilly.com are the property of their respective owners. • confreg@oreilly.com