Presented By O'Reilly and Cloudera
Make Data Work
March 13–14, 2017: Training
March 14–16, 2017: Tutorials & Conference
San Jose, CA

Paint the landscape and secure your data center with Apache Spot

Cesar Berho (Intel), Alan Ross (Intel)
11:50am12:30pm Wednesday, March 15, 2017
Platform Security and Cybersecurity
Location: LL21 B Level: Intermediate
Average rating: **...
(2.00, 3 ratings)

Who is this presentation for?

  • Security professionals, data scientists, network professionals, and DevOps engineers

Prerequisite knowledge

  • A basic understanding of data ingestion techniques, Hadoop, and machine-learning algorithms (supervised and unsupervised techniques)
  • Familiarity with security threat models

What you'll learn

  • Explore Apache Spot (incubating), which delivers next-generation cybersecurity analytics architecture through unsupervised learning using machine-learning techniques at cloud-scale for anomaly detection

Description

Over the last few years, the traditional data center has been in a state of constant evolution. The arrival of cloud services and XaaS has introduced a new paradigm on the computing age, as well as on visibility and controls on this space, as it becomes an extension of the business network. In this new world, security is of the utmost importance. Existing threat tools can help, but it’s very expensive to analyze data at such a large scale and get actionable insights. Cybersecurity demands scale, and big data analytics and machine learning are the current top choices for success.

A community-based approach to information security is needed. Cesar Berho and Alan Ross offer an overview of open source project Apache Spot (incubating), which delivers next-generation cybersecurity analytics architecture through unsupervised learning using machine-learning techniques at cloud scale for anomaly detection. Apache Spot represents a great place for interested individuals to contribute to and help define an open data model that provides a standard format for enriched event data that makes it easier to integrate cross-application data to gain complete enterprise visibility and develop net new analytic functionality. Open data models help organizations quickly share new analytics with one another as new threats are discovered, and with Hadoop, organizations are able to run these analytics against comprehensive historic datasets, helping them identify past threats that have slipped through the cracks, giving security professionals the ability to collaborate like cybercriminals do.

Apache Spot’s approach involves several key processes to facilitate collection, storage, processing, and presentation of telemetry sources. As of today, current contributions are oriented to network use cases like network flows (nfcapd), DNS (PCAP), and proxies, and Apache Spot’s solutions are founded on a parallel ingest framework using Kafka, open source decoders that load data in Hadoop with Spark Streaming, machine learning that helps to filter billions of events to a few thousands, finding those outliers that can represent the needle on the haystack using unsupervised learning, and operational analytics. Community contribution is open and has a huge potential for the creation of enhanced and additional algorithms that can pick up broader event data types, on the endpoint or based on identity; inhance correlation for incident response; enter into predictive research and be able to observe at large scale potential threats in the near term; root cause analysis, which is especially useful on forensics and threat remediation; and a wider scope of analysis going beyond the traditional network architecture—observing things on SDN, security controllers, microservices, and making known the things that represent a black box today.

Photo of Cesar Berho

Cesar Berho

Intel

Cesar Berho is a senior security researcher at Intel and a committer to the Apache Spot project. Cesar has 12 years of experience working within the cybersecurity industry in positions in operations, design, engineering, and research. Recently, he has been focusing on new ways to analyze telemetry sources with analytics and benchmarking security implementations.

Photo of Alan Ross

Alan Ross

Intel

Alan Ross is a senior principal engineer and chief cloud security architect at Intel. Alan has more than 20 years of information security experience in various capacities, from policy and awareness and security/risk analysis to engineering and architecture. Previously, Alan worked as a security administrator and engineer for two global companies, focusing on network, host, and application security. He has 21 US patents and many others pending relating to security and manageability of systems and networks. Alan is currently leading activities around Open Network Insight, an open source project for advanced analytics of network telemetry.

Leave a Comment or Question

Help us make this conference the best it can be for you. Have questions you'd like this speaker to address? Suggestions for issues that deserve extra attention? Feedback that you'd like to share with the speaker and other attendees?

Join the conversation here (requires login)

Comments

Picture of Cesar Berho
Cesar Berho | SECURITY RESEARCHER
03/16/2017 2:05pm PDT

Slides have been posted

Steve Bedeker | IT ARCHITECT
03/15/2017 4:57am PDT

Will you be posting the slides?