Dean Wampler helps you develop a conceptual understanding of the challenges faced by your teams as they develop and deploy machine learning and artificial intelligence services integrated with fast data (streaming) pipelines. While combining these technologies is challenging, the benefits include timely delivery of innovative services to your customers.
Dean begins by briefly discuss machine learning use cases that are best delivered as streaming data applications. He then explores the main challenges faced when deploying these technologies together and outline solutions to these challenges, including criteria to use when evaluating choices. Along the way, he explains the tools your teams are already talking about and the role they play.
Topics include:
Dean Wampler is an expert in streaming data systems, focusing on applications of machine learning and artificial intelligence (ML/AI). He’s head of developer relations at Anyscale, which is developing Ray for distributed Python, primarily for ML/AI. Previously, he was an engineering VP at Lightbend, where he led the development of Lightbend CloudFlow, an integrated system for building and running streaming data applications with Akka Streams, Apache Spark, Apache Flink, and Apache Kafka. Dean is the author of Fast Data Architectures for Streaming Applications, Programming Scala, and Functional Programming for Java Developers, and he’s the coauthor of Programming Hive, all from O’Reilly. He’s a contributor to several open source projects. A frequent conference speaker and tutorial teacher, he’s also the co-organizer of several conferences around the world and several user groups in Chicago. He earned his PhD in physics from the University of Washington.
For exhibition and sponsorship opportunities, email strataconf@oreilly.com
For information on trade opportunities with O'Reilly conferences, email partners@oreilly.com
View a complete list of Strata Data Conference contacts
©2019, O'Reilly Media, Inc. • (800) 889-8969 or (707) 827-7019 • Monday-Friday 7:30am-5pm PT • All trademarks and registered trademarks appearing on oreilly.com are the property of their respective owners. • confreg@oreilly.com