Presented By
O’Reilly + Cloudera
Make Data Work
March 25-28, 2019
San Francisco, CA

Real-time analytics on deep learning: When TensorFlow met Presto at Uber

Zhenxiao Luo (Uber)
5:10pm5:50pm Wednesday, March 27, 2019
Average rating: ****.
(4.00, 4 ratings)

Who is this presentation for?

  • Software engineers, data scientists, and machine learning engineers



Prerequisite knowledge

  • A basic understanding of big data and deep learning

What you'll learn

  • Explore Uber's big data architecture and deep learning architecture and learn how the company uses them for real-time analytics


From determining the most convenient rider pickup points to predicting the fastest routes, Uber uses machine learning and data-driven analytics to create seamless trip experiences. Inside Uber, big data and machine learning are used everywhere.

Uber’s analysts and engineers wanted to run real-time analytics with deep learning models. But copying data from one source to another is pretty expensive, and it’s challenging to support real-time analytics with deep learning.

Zhenxiao Luo explains how Uber supports real-time analytics with deep learning on the fly, without any data copying. He starts with the company’s big data and deep learning infrastructure, specifically TensorFlow, Hadoop, and Presto. He outlines how Uber uses TensorFlow as a deep learning engine and Presto as the interactive SQL engine, and then details how Uber built a Presto TensorFlow connector from scratch to support real-time analytics on deep learning. He concludes by sharing the company’s production experience and roadmap.

Photo of Zhenxiao Luo

Zhenxiao Luo


Zhenxiao Luo is an engineering manager at Uber, where he runs the interactive analytics team. Previously, he led the development and operations of Presto at Netflix and worked on big data and Hadoop-related projects at Facebook, Cloudera, and Vertica. He holds a master’s degree from the University of Wisconsin-Madison and a bachelor’s degree from Fudan University.