
The magic behind your Lyft ride prices
A case study on machine learning and streaming

Strata Data, San Francisco, March 27th 2019

Rakesh Kumar | Engineer, Pricing
Thomas Weise | @thweise | Engineer, Streaming Platform

go.lyft.com/dynamic-pricing-strata-sf-2019

http://go.lyft.com/dynamic-pricing-strata-sf-2019

Agenda

2

● Introduction to dynamic pricing
● Legacy pricing infrastructure
● Streaming use case
● Streaming based infrastructure
● Beam & multiple languages
● Beam Flink runner
● Lessons learned

3

Dynamic Pricing
Supply/Demand curve
ETA

Pricing

Notifications
Detect Delays
Coupons

User Delight
Fraud
Behaviour Fingerprinting
Monetary Impact
Imperative to act fast

Top Destinations

Core Experience

Introduction to
Dynamic Pricing

4

What is prime time?

Location + time specific multiplier on
the base fare for a ride

e.g. "in downtown SF at 5:00pm, prime
time is 2.0"

Means we double the normal fare in
that place at that time

Location: geohash6 (e.g. ‘9q8yyq’)

Time: calendar minute

5

6

● Balance supply and demand to maintain service level

● State of marketplace is constantly changing

● "Surge pricing solves the wild goose chase" (paper)

Why do we need prime time?

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2890666

Legacy Pricing
Infrastructure

7

Legacy architecture: A series of cron jobs

● Ingest high volume of client app events
(Kinesis, KCL)

● Compute features (e.g. demand,
conversation rate, supply) from events

● Run ML models on features to compute
primetime for all regions (per min, per gh6)

SFO, calendar_min_1: {gh6: 1.0, gh6: 2.0, ...}

NYC: calendar_min_1: {gh6, 2.0, gh6: 1.0, ...}

8

Problems

1. Latency

2. Code complexity (LOC)

3. Hard to add new features involving windowing/join (i.e. arbitrary demand
windows, subregional computation)

4. No dynamic / smart triggers

9

Can we use Flink?

10

11

Streaming Stack

11

Streaming
Application
(SQL, Java)

Stream / Schema
Registry

Deployment
Tooling

Metrics &
Dashboards Alerts Logging

Amazon
EC2 Amazon S3 Wavefront Salt

(Config / Orca) Docker

Source Sink

12

Streaming and Python

● Flink and many other big data ecosystem projects are Java / JVM based

○ Team wants to adopt streaming, but doesn’t have the Java skills

○ Jython != Python

● Use cases for different language environments

○ Python primary option for Machine Learning

● Cost of many API styles and runtime environments

13

Solution with Beam

Streaming
Application

(Python/Beam)

Source Sink

Streaming based
Pricing Infrastructure

14

15

Pipeline (conceptual outline)

kinesis events
(source)

aggregate and
windowfilter events

run models to
generate
features

(culminating in
PT)

internal services redis

ride_requested,
app_open, ...

unique_users_per_min,
unique_requests_per_5_
min, ...

conversion learner,
eta learner, ...

Lyft apps
(phones)

valid sessions,
dedupe, ...

Details of implementation

1. Filtering (with internal service calls)

2. Aggregation with Beam windowing: 1min, 5min (by event time)

3. Triggers: watermark or stateful processing

4. Machine learning models invoked using stateful Beam transforms

5. Final gh6:pt output from pipeline stored to Redis

16

Gains

• 60% reduction in latency

• Reuse of model code

• 10K => 4K LOC

• 300 => 120 AWS instances

17

Beam and multiple
languages

18

19

The Beam Vision

1. End users: who want to write pipelines in a
language that’s familiar.

2. SDK writers: who want to make Beam
concepts available in new languages.
Includes IOs: connectors to data stores.

3. Runner writers: who have a distributed
processing environment and want to
support Beam pipelines

Beam Model: Fn Runners

Apache
Flink

Apache
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam
Python

Execution Execution

Cloud
Dataflow

Execution

https://s.apache.org/apache-beam-project-overview

https://s.apache.org/apache-beam-project-overview

20

Multi-Language Support

● Initially Java SDK and Java Runners

● 2016: Start of cross-language support effort

● 2017: Python SDK on Dataflow

● 2018: Go SDK (for portable runners)

● 2018: Python on Flink MVP

● Next: Cross-language pipelines, more portable runners

21

Python Example

p = beam.Pipeline(runner=runner, options=pipeline_options)

(p

 | ReadFromText("/path/to/text*") | Map(lambda line: ...)

 | WindowInto(FixedWindows(120)

 trigger=AfterWatermark(

 early=AfterProcessingTime(60),

 late=AfterCount(1))

 accumulation_mode=ACCUMULATING)

 | CombinePerKey(sum))

 | WriteToText("/path/to/outputs")

)

result = p.run()

(What, Where, When, How)

22

⋮
input | Sum.PerKey()

Python

input.apply(

 Sum.integersPerKey())

Java

SELECT key, SUM(value)

FROM input GROUP BY key

SQL (via Java)

⋮
Cloud Dataflow

Apache Spark

Apache Flink

Apache Apex

Gearpump

Apache Samza

Apache Nemo
(incubating)

IBM Streams

Sum Per Key

Java objects

Sum Per Key

Dataflow JSON API

Portability (originally)

https://s.apache.org/state-of-beam-sfo-2018

https://s.apache.org/state-of-beam-sfo-2018

23

⋮

input | Sum.PerKey()

Python

stats.Sum(s, input)

Go

SELECT key, SUM(value)

FROM input GROUP BY key

SQL (via Java)

⋮

input.apply(

 Sum.integersPerKey())

Java Apache Spark

Apache Flink

Apache Apex

Gearpump

Cloud Dataflow

Apache Samza

Apache Nemo
(incubating)

IBM Streams

Sum Per Key

Java objects

Sum Per Key
Portable protos

Portability (current)

https://s.apache.org/state-of-beam-sfo-2018

https://s.apache.org/state-of-beam-sfo-2018

Beam Flink Runner

24

25

Portability Framework w/ Flink Runner

SDK
(Python)

Job Service

Artifact
Staging

Job Manager

Fn Services
(Beam Flink Task)

Task Manager

Executor / Fn API

Provision Control Data

Artifact
Retrieval State Logging

gRPC

Pipeline (protobuf)

ClusterRunner

Dependencies
(optional)

python -m
apache_beam.examples.wordcount \
 --input=/etc/profile \
 --output=/tmp/py-wordcount-direct \
 --runner=PortableRunner \
 --job_endpoint=localhost:8099 \
 --streaming

Staging Location
(DFS, S3, …)

SDK Worker
(UDFs)

SDK Worker
(UDFs)

SDK Worker
(Python)

Flink Job

26

Portable Runner

● Provide Job Service endpoint (Job Management API)
● Translate portable pipeline representation to native (Flink) API
● Provide gRPC endpoints for control/data/logging/state plane
● Manage SDK worker processes that execute user code
● Manage bundle execution (with arbitrary user code) via Fn API
● Manage state for side inputs, user state and timers

Common implementation for JVM based runners
(/runners/java-fn-execution) and portable “Validate Runner”

integration test suite in Python!

27

Fn API - Bundle Processing

https://s.apache.org/beam-fn-api-processing-a-bundle

Bundle size
matters!

● Amortize
overhead
over many
elements

● Watermark
hold effect on
latency

https://s.apache.org/beam-fn-api-processing-a-bundle

28

Lyft Flink Runner Customizations

● Translator extension for streaming sources

○ Kinesis, Kafka consumers that we also use in Java Flink jobs

○ Message decoding, watermarks

● Python execution environment for SDK workers

○ Tailored to internal deployment tooling

○ Docker-free, frozen virtual envs

● https://github.com/lyft/beam/tree/release-2.11.0-lyft

https://github.com/lyft/beam/tree/release-2.11.0-lyft

29

Fn API

How slow is this ?

● Fn API Overhead 15% ?
● Fused stages
● Bundle size
● Parallel SDK workers
● TODO: Cython, protobuf

C++ bindings

decode, …, window count
 (messages
 | 'reshuffle' >> beam.Reshuffle()
 | 'decode' >> beam.Map(lambda x: (__import__('random').randint(0, 511), 1))
 | 'noop1' >> beam.Map(lambda x : x)
 | 'noop2' >> beam.Map(lambda x : x)
 | 'noop3' >> beam.Map(lambda x : x)
 | 'window' >> beam.WindowInto(window.GlobalWindows(),
 trigger=Repeatedly(AfterProcessingTime(5 * 1000)),
 accumulation_mode= AccumulationMode.DISCARDING)
 | 'group' >> beam.GroupByKey()
 | 'count' >> beam.Map(count)
)

https://docs.google.com/document/d/1XYzb1Fnt2sam7u2MsGFaZp-2qSIGxUn66VLer-bcXAk/edit#heading=h.28zen91lnnsv
https://developers.google.com/protocol-buffers/docs/reference/python-generated
https://developers.google.com/protocol-buffers/docs/reference/python-generated

30

Fast enough for real Python work !

● c5.4xlarge machines (16 vCPU, 32 GB)

● 16 SDK workers / machine

● 1000 ms or 1000 records / bundle

● 280,000 transforms / second / machine (~ 17,500 per worker)

● Python user code will be gating factor

31

Beam Portability Recap

● Pipelines written in non-JVM languages on JVM runners
○ Python, Go on Flink (and others)

● Full isolation of user code
○ Native CPython execution w/o library restrictions

● Configurable SDK worker execution
○ Docker, Process, Embedded, ...

● Multiple languages in a single pipeline (future)
○ Use Java Beam IO with Python
○ Use TFX with Java
○ <your use case here>

32

Feature Support Matrix (Beam 2.11.0)

https://s.apache.org/apache-beam-portability-support-table

https://s.apache.org/apache-beam-portability-support-table

Lessons Learned

33

Lessons Learned

• Python Beam SDK and portable Flink runner evolving

• Keep pipeline simple - Flink tasks / shuffles are not free

• Stateful processing is essential for complex logic

• Model execution latency matters

• Instrument everything for monitoring

• Approach for pipeline upgrade and restart

• Mind your dependencies - rate limit API calls

• Testing story (integration, staging)

34

We’re Hiring! Apply at www.lyft.com/careers
or email data-recruiting@lyft.com

Data Engineering

Engineering Manager
San Francisco

Software Engineer
San Francisco, Seattle, &

New York City

Data Infrastructure

Engineering Manager
San Francisco

Software Engineer
San Francisco & Seattle

Experimentation

Software Engineer
San Francisco

Streaming

Software Engineer
San Francisco

Observability

Software Engineer
San Francisco

http://www.lyft.com/careers

Please ask questions!

This presentation:

http://go.lyft.com/dynamic-pricing-strata-sf-2019

http://go.lyft.com/dynamic-pricing-strata-sf-2019

