
ROCKSET: The design and implementation
of a data system for low-latency queries for
search and analytics

Dhruba Borthakur, Igor Canadi Rockset

● Software Engineer at Rockset
● RocksDB at Facebook
● GraphQL

2

Dhruba Igor
● CTO and Co-Founder at Rockset
● RocksDB at Facebook
● Hadoop File System
● HBase

Speakers

Overview
1. Converged indexing
2. Query execution over a distributed index
3. High-throughput index updates
4. Scaling in the cloud

3

● Low latency queries
● High throughput writes

4

Ease of use High performance
● Minimize configuration
● Can connect to any data source
● Real time writes

Motivation

Converged indexing

Columnar storage
● Store each column separately
● Great compression
● Only fetch columns query needs

6

Columnar storage
● Store each column separately
● Great compression
● Only fetch columns query needs

<doc 0>
{
 “name”: “Igor”,
 “interests”: [“databases”, “snowboarding”],
 “last_active”: 2019/3/15
}

<doc 1>
{
 “name”: “Dhruba”,
 “interests”: [“cars”, “databases”],
 “last_active”: 2019/3/22
}

“name”

“interests”

0 Igor

1 Dhruba

0.0 databases

0.1 snowboarding

1.0 cars

1.1 databases

“last_active”
0 2019/3/15

1 2019/3/22

7

● High write latency
● High minimum read latency
● Not suitable for online

applications

8

Advantages Disadvantages
● Cost effective
● Narrow queries, wide tables
● Scan queries
● Analytical queries

Columnar storage

Search indexing
● For each value, store documents containing that value (posting list)
● Quickly retrieve a list of document IDs that match a predicate

9

Search indexing
● For each value, store documents containing that value (posting list)
● Quickly retrieve a list of document IDs that match a predicate

“name”

“interests”

Dhruba 1

Igor 0

databases 0.0; 1.1

cars 1.0

snowboarding 0.1

“last_active”
2019/3/15 0

2019/3/22 1

<doc 0>
{
 “name”: “Igor”,
 “interests”: [“databases”, “snowboarding”],
 “last_active”: 2019/3/15
}

<doc 1>
{
 “name”: “Dhruba”,
 “interests”: [“cars”, “databases”],
 “last_active”: 2019/3/22
}

10

● Slower analytical queries

11

Advantages Disadvantages
● High selectivity queries
● Low latency queries
● Suitable for online applications

Search indexing

● Columnar and search indexes in the same system
● Built on top of key-value store abstraction
● Each document maps to many key-value pairs

Converged indexing

12

● Columnar and search indexes in the same system
● Built on top of key-value store abstraction
● Each document maps to many key-value pairs

Converged indexing

<doc 0>
{
 “name”: “Igor”
}

<doc 1>
{
 “name”: “Dhruba”
}

Key Value

R.0.name Igor Row Store

R.1.name Dhruba

C.name.0 Igor Column Store

C.name.1 Dhruba

S.name.Dhruba.1 Search index

S.name.Igor.0

13

● Fast analytical queries + fast search queries
● Optimizer picks between columnar store or search index

Converged indexing - queries

14

● Fast analytical queries + fast search queries
● Optimizer picks between columnar store or search index

Converged indexing - queries

SELECT *
FROM search_logs
WHERE keyword = ‘strata’
AND locale = ‘en’

Search index

SELECT keyword, count(*)
FROM search_logs
GROUP BY keyword
ORDER BY count(*) DESC

Columnar store

15

● All fields indexed
● SQL
● Document model, schemaless
● Real-time writes, updates and deletes
● Cloud service

Rockset - data system built on converged indexing

16

Query execution over a
distributed index

Rockset query architecture
● API layer
● Aggregators
● Leaves

Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB

Leaf

RocksDB

Leaf

RocksDB

https://rockset.com/blog/aggregator-leaf-tailer-an-architecture-for-live-analytics-on-event-streams/
18

Rockset query architecture
● Converged index sharded

across RocksDB instances
● Document-based sharding
● Query hits all shards

Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB

Leaf

RocksDB

Leaf

RocksDB

19

Rockset query architecture
● Aggregator receives the query
● Parsing, compilation,

optimization
● Produces operator DAG

Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB

Leaf

RocksDB

Leaf

RocksDB

20

Rockset query architecture
● Set of instructions for each

node:
○ Predecessors
○ Operators
○ Successors

Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB

Leaf

RocksDB

Leaf

RocksDB

21

Rockset query architecture
● Set of instructions for each

node:
○ Predecessors
○ Operators
○ Successors

● On each node:
○ Wait for predecessors
○ Connect to successors
○ Data starts flowing

bottom-up

Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB

Leaf

RocksDB

Leaf

RocksDB

22

High-throughput index
updates

● Maintaining multiple indexes adversely impacts write throughput

Challenges with updating multiple indexes

24

● Maintaining multiple indexes adversely impacts write throughput
● Challenge 1: one new record = multiple servers updates

○ Requires consensus coordination between servers

Challenges with updating multiple indexes

25

● Maintaining multiple indexes adversely impacts write throughput
● Challenge 1: one new record = multiple servers updates

○ Requires consensus coordination between servers
● Challenge 2: one new field = multiple random writes

○ Requires increased disk I/O

Challenges with updating multiple indexes

26

Challenge 1: one new record = multiple servers updates
● In a traditional database with term sharding and n indexes, one write

incurs updates to n different indexes on n servers

27

<doc 1>
{
 “name”: “Dhruba”,
 “interests”: [“cars”, “databases”],
 “last_active”: 2019/3/22
}

“interests”

Dhruba 1

Igor 0

databases 0.0; 1.1

cars 1.0

snowboarding 0.1

“last_active”
2019/3/15 0

2019/3/22 1

“name”

Challenge 1: one new record = multiple servers updates
● In a traditional database with term sharding and n indexes, one write

incurs updates to n different indexes on n servers
● Requires a distributed transaction (paxos, raft) between n servers

28

<doc 1>
{
 “name”: “Dhruba”,
 “interests”: [“cars”, “databases”],
 “last_active”: 2019/3/22
}

“interests”

Dhruba 1

Igor 0

databases 0.0; 1.1

cars 1.0

snowboarding 0.1

“last_active”
2019/3/15 0

2019/3/22 1

“name”

Addressing challenge 1: doc sharding

29

Distributed
Log

Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB

Leaf

RocksDB

Leaf

RocksDB

new
docs

● Updates are durably-buffered
to a distributed log

Addressing challenge 1: doc sharding
● Updates are durably buffered

to a distributed log
● Leafs tail only documents in

the shards they are responsible
for

● Doc sharding means all new
keys will only affect a single
shard/leaf

30

Distributed
Log

Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB

Leaf

RocksDB

Leaf

RocksDB

new
keys

Challenge 2: one new doc = multiple random writes
● One doc becomes multiple

keys in the index

31

Key Value

R.0.name Igor Row Store

R.1.name Dhruba

C.name.0 Igor Column Store

C.name.1 Dhruba

S.name.Dhruba.1 Search index

S.name.Igor.0

● Traditional systems use B-tree storage
structure

● Keys are sorted across tables
● A single record update would incur writes to

multiple different tables

Storage

Memory Manager

Challenge 2: one new doc = multiple random writes

32

Memory Buffer

Table 1 Table 2

Table 3 Table 4

new
docs

● RocksDB uses log-structured merge-tree
(LSM)

● Multiple record updates accumulate in
memory and written into a single SST file

● Keys are sorted between SST files via
compaction in a background process

● Multiple index updates from multiple docs
result in one write to storage

Storage

Memory Manager
Memory Buffer

SST 1 SST 2

SST 3 SST 4

new
docs

Addressing challenge 2: RocksDB LSM

33

background
compaction

Scaling in the cloud

● Cost of 1 cpu for 100 minutes == Cost of 100 cpu for 1 minute!!

Key insight into economics of cloud

35

● Cost of 1 cpu for 100 minutes == Cost of 100 cpu for 1 minute!!
○ Without cloud: statically provision for peak demand
○ With cloud: dynamically provision for current demand

Key insight into economics of cloud

36

● Cost of 1 cpu for 100 minutes == Cost of 100 cpu for 1 minute!!
○ Without cloud: statically provision for peak demand
○ With cloud: dynamically provision for current demand

● Goal: scale up and down storage as needed to achieve desired
performance

Key insight into economics of cloud

37

● Kubernetes Horizontal Pod Autoscaler (HPA) to schedule compute pods
across pool of nodes (AWS EC2 machines)
○ Using cpu and memory thresholds

● Custom scheduler to manage underlying nodes
○ Manage both demand (of workload) and supply (of hardware)
○ Sum CPU usage of all pods to spin up new nodes when needed
○ Aggressively shed nodes when not needed

Scheduling compute

38

Scheduling storage
● Each leaf running RocksDB

stores indices

Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB

Leaf

RocksDB

Leaf

RocksDB

Distributed
Log

39

Scheduling storage
● Each leaf running RocksDB stores

indices
● RocksDB-Cloud (open source)

extends RocksDB to flush SST files
to durable cloud storage

● RocksDB-Cloud = serverless
storage

● http://github.com/rockset/rocksdb-cloud

Rockset SQL API

Aggregator Aggregator

 Object Storage (AWS S3, GCS, Minio, ...)

Leaf

RocksDB-Cloud

RocksDB

Leaf

RocksDB-Cloud

RocksDB

Leaf

RocksDB-Cloud

RocksDB

Distributed
Log

40

SST filesSST files SST files

Leaf

RocksDB-Cloud

 Object Storage (AWS S3, GCS, Minio, ...)

Leaf

RocksDB-Cloud

Zero-copy read replica Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB-Cloud

Leaf

RocksDB-Cloud

Distributed
Log

41

RocksDB RocksDB RocksDB RocksDB

SST filesSST files SST files

● Copy SST files to a new server

Leaf

RocksDB-Cloud

 Object Storage (AWS S3, GCS, Minio, ...)

Leaf

RocksDB-Cloud

Zero-copy read replica Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB-Cloud

Leaf

RocksDB-Cloud

Distributed
Log

42

RocksDB RocksDB RocksDB RocksDB

SST filesSST files SST files

● Copt SST files to a new server
● Tail new updates from log

Leaf

RocksDB-Cloud

 Object Storage (AWS S3, GCS, Minio, ...)

Leaf

● Copy SST files to a new server
● Tail new updates from log
● Able to serve more queries

RocksDB-Cloud

Zero-copy read replica Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB-Cloud

Leaf

RocksDB-Cloud

Distributed
Log

43

RocksDB RocksDB RocksDB RocksDB

SST filesSST files SST files

The Aggregator Leaf Tailer Architecture

44https://rockset.com/blog/aggregator-leaf-tailer-an-architecture-for-live-analytics-on-event-streams/

Event Analytics Using Rockset

45

● All fields and values indexed
● Low-latency queries
● Serving layer for online applications

and live dashboards

SQL
Schemaless

ingest

Check it out: rockset.com

dhruba@rockset.com
igor@rockset.com

Thank you.

Rate today’s session

47

#
#
#
#

