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What is Apache Pulsar?
• Distributed pub/sub messaging 

• Backed by a scalable log store — Apache BookKeeper 

• Streaming & Queuing 

• Low latency 

• Multi-tenant 

• Geo-Replication
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Architecture view
• Separate layers 

between brokers 
bookies 

• Broker and bookies 
can be added 
independently 

• Traffic can be shifted 
very quickly across 
brokers 

• New bookies will ramp 
up on traffic quickly
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Messaging model
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Messaging semantics

At most once  

At least once  

Exactly once
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“Exactly once”

• There is no agreement in industry on what it really means 

• Any vendor has claimed exactly once at some point 

• Many caveats… “only if there are no crashes…” 

• No formal definition of exactly once — unlike “consensus” or “atomic 
broadcast”
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“Effectively once”

• Identify and discard duplicated messages with 100% accuracy 

• In presence of any kind of failures 

• Messages can be received and processed more than once 

• …but effects on the resulting state will be observed only once
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What can fail?
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What can fail?
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What can fail?
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What can fail?
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What can fail? — Geo-Replication

12



Breaking the problem

1. Store the message once — ”producer idempotency” 

2. Allow applications to “process data only-once”
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Idempotent producer

• Pulsar broker detects and discards messages that are being retransmitted 

• It works when a broker crashes and topic is reassigned 

• It works when a producer application crashes
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Identifying producers

• Use “sequence ids” to detect retransmissions 

• Each producer on a topic has it own sequence of messages 

• Use “producer-name” to identify producers
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Detecting duplicates
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Detecting duplicates
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Detecting duplicates
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Detecting duplicates
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Sequence Id snapshot

20



Sequence Id snapshot
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Sequence Id snapshot
• Snapshots are taken every N entries to limit recovery time 

• Snapshot & cursor updates are atomic 

• Cursor updates are stored in BookKeeper — durable & replicated 

• On recovery 

• Load the snapshot from the cursor 

• Replay the entries from the cursor position
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What if application producer crashes?

• Pulsar needs to identify the new producer as being the same “logical” 
producer as before 

• In practice, this is only useful if you have a “replayable” source (eg: file, 
stream, …)
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Resuming a producer session

ProducerConfiguration conf = new ProducerConfiguration(); 
conf.setProducerName("my-producer-name"); 
conf.setSendTimeout(0, TimeUnit.SECONDS); 
Producer producer = client.createProducer(MY_TOPIC, conf); 

// Get last committed sequence id before crash 
long lastSequenceId = producer.getLastSequenceId(); 
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Using sequence Ids
// Fictitious record reader class 
RecordReader source = new RecordReader("/my/file/path"); 

long fileOffset = producer.getLastSequenceId(); 
source.seekToOffset(fileOffset); 

while (source.hasNext()) { 
    long currentOffset = source.currentOffset(); 
    Message msg = MessageBuilder.create() 
        .setSequenceId(currentOffset) 
        .setContent(source.next()).build(); 

   producer.send(msg); 
} 
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Consuming messages only once
• Pulsar Consumer API is very convenient 

• Managed subscription — tracking individual messages 

Consumer consumer = client.subscribe(MY_TOPIC, MY_SUBSCRIPTION_NAME);

while (true) {
    Message msg = consumer.receive();
    // Process the message...
    consumer.acknowledge(msg);
}

26



Effectively-once with Consumer

• Consumer is very simple but doesn’t allow a large degree of control 

• Processing and acknowledge are not atomic 

• To achieve “effectively once” we need to rely on an external system to 
deduplicate the processing results. Eg:  

• RDBMS — Keep the message id as a column with a “unique” index 

• Critical write to update the state — compareAndSet() or similar
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Pulsar Reader

• Reader is a low level API to receive data from a Pulsar topic 

• There is no managed subscription 

• Application always specifies the message id where it wants to start reading 
from
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Reader example

MessageId lastMessageId = recoverLastMessageIdFromDB();
Reader reader = client.createReader(MY_TOPIC, lastMessageId,
                                    new ReaderConfiguration());

while (true) {
    Message msg = reader.readNext();
    byte[] msgId = msg.getMessageId().toByteArray();

    // Process the message and store msgId atomically
}
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Example — Pulsar Functions
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Pulsar Functions
• A function gets messages from 1 or more topics 

• An instance of the function is invoked to process the event 

• The output of the function is published on 1 or more topics 

• Super simple to use — No SDK required — Python example:  

def process(input): 
    return input + '!' 
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Pulsar Functions
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Effectively once with functions

• Use the message id from source topic as sequence id for sink topic 

• Works with “Consumer” API  

• When consuming from multiple topics or partitions, creates 1 producer per 
each source topic/partition, to ensure monotonic sequence ids
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Performance

• Pulsar approach guarantees deduplication in all failure scenarios 

• Overhead is minimal: 2 in memory hashmap updates 

• No reduction in throughput — No increased latency 

• Controllable increase in recovery time
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Performance — Benchmark

OpenMessaging 
Benchmark 

1 Topic / 1 Partition 

1 Partition / 1 
Consumer 

1Kb msg
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Difference with Kafka approach
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Kafka Pulsar

Producer Idempotency Best-effort (in memory only) Guaranteed after crash

Transactions 2 phase commit No transactions

Dedup across producer 
sessions No Yes

Dedup with geo-
replication No Yes

Throughput Lower (1 in-flight message/batch for 
ordering) Equal



Curious to Learn More?

• Apache Pulsar — https://pulsar.incubator.apache.org 

• Follow Us — @apache_pulsar 

• Streamlio blog — https://streaml.io/blog
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