
Matteo Merli

Guaranteed “effectively-once” messaging semantic

What is Apache Pulsar?
• Distributed pub/sub messaging

• Backed by a scalable log store — Apache BookKeeper

• Streaming & Queuing

• Low latency

• Multi-tenant

• Geo-Replication

2

Architecture view
• Separate layers

between brokers
bookies

• Broker and bookies
can be added
independently

• Traffic can be shifted
very quickly across
brokers

• New bookies will ramp
up on traffic quickly

3

Pulsar Broker 1 Pulsar Broker 2 Pulsar Broker 3

Bookie 1 Bookie 2 Bookie 3 Bookie 4 Bookie 5

Apache BookKeeper

Apache Pulsar

Producer Consumer

Messaging model

4

Messaging semantics

At most once

At least once

Exactly once

5

“Exactly once”

• There is no agreement in industry on what it really means

• Any vendor has claimed exactly once at some point

• Many caveats… “only if there are no crashes…”

• No formal definition of exactly once — unlike “consensus” or “atomic
broadcast”

6

“Effectively once”

• Identify and discard duplicated messages with 100% accuracy

• In presence of any kind of failures

• Messages can be received and processed more than once

• …but effects on the resulting state will be observed only once

7

What can fail?

8

What can fail?

9

What can fail?

10

What can fail?

11

What can fail? — Geo-Replication

12

Breaking the problem

1. Store the message once — ”producer idempotency”

2. Allow applications to “process data only-once”

13

Idempotent producer

• Pulsar broker detects and discards messages that are being retransmitted

• It works when a broker crashes and topic is reassigned

• It works when a producer application crashes

14

Identifying producers

• Use “sequence ids” to detect retransmissions

• Each producer on a topic has it own sequence of messages

• Use “producer-name” to identify producers

15

Detecting duplicates

16

Detecting duplicates

17

Detecting duplicates

18

Detecting duplicates

19

Sequence Id snapshot

20

Sequence Id snapshot

21

Sequence Id snapshot
• Snapshots are taken every N entries to limit recovery time

• Snapshot & cursor updates are atomic

• Cursor updates are stored in BookKeeper — durable & replicated

• On recovery

• Load the snapshot from the cursor

• Replay the entries from the cursor position

22

What if application producer crashes?

• Pulsar needs to identify the new producer as being the same “logical”
producer as before

• In practice, this is only useful if you have a “replayable” source (eg: file,
stream, …)

23

Resuming a producer session

ProducerConfiguration conf = new ProducerConfiguration();
conf.setProducerName("my-producer-name");
conf.setSendTimeout(0, TimeUnit.SECONDS);
Producer producer = client.createProducer(MY_TOPIC, conf);

// Get last committed sequence id before crash
long lastSequenceId = producer.getLastSequenceId();

24

Using sequence Ids
// Fictitious record reader class
RecordReader source = new RecordReader("/my/file/path");

long fileOffset = producer.getLastSequenceId();
source.seekToOffset(fileOffset);

while (source.hasNext()) {
 long currentOffset = source.currentOffset();
 Message msg = MessageBuilder.create()
 .setSequenceId(currentOffset)
 .setContent(source.next()).build();

 producer.send(msg);
}

25

Consuming messages only once
• Pulsar Consumer API is very convenient

• Managed subscription — tracking individual messages

Consumer consumer = client.subscribe(MY_TOPIC, MY_SUBSCRIPTION_NAME);

while (true) {
 Message msg = consumer.receive();
 // Process the message...
 consumer.acknowledge(msg);
}

26

Effectively-once with Consumer

• Consumer is very simple but doesn’t allow a large degree of control

• Processing and acknowledge are not atomic

• To achieve “effectively once” we need to rely on an external system to
deduplicate the processing results. Eg:

• RDBMS — Keep the message id as a column with a “unique” index

• Critical write to update the state — compareAndSet() or similar

27

Pulsar Reader

• Reader is a low level API to receive data from a Pulsar topic

• There is no managed subscription

• Application always specifies the message id where it wants to start reading
from

28

Reader example

MessageId lastMessageId = recoverLastMessageIdFromDB();
Reader reader = client.createReader(MY_TOPIC, lastMessageId,
 new ReaderConfiguration());

while (true) {
 Message msg = reader.readNext();
 byte[] msgId = msg.getMessageId().toByteArray();

 // Process the message and store msgId atomically
}

29

Example — Pulsar Functions

30

Pulsar Functions
• A function gets messages from 1 or more topics

• An instance of the function is invoked to process the event

• The output of the function is published on 1 or more topics

• Super simple to use — No SDK required — Python example:

def process(input):
 return input + '!'

31

Pulsar Functions

32

Effectively once with functions

• Use the message id from source topic as sequence id for sink topic

• Works with “Consumer” API

• When consuming from multiple topics or partitions, creates 1 producer per
each source topic/partition, to ensure monotonic sequence ids

33

Performance

• Pulsar approach guarantees deduplication in all failure scenarios

• Overhead is minimal: 2 in memory hashmap updates

• No reduction in throughput — No increased latency

• Controllable increase in recovery time

34

Performance — Benchmark

OpenMessaging
Benchmark

1 Topic / 1 Partition

1 Partition / 1
Consumer

1Kb msg

35

Difference with Kafka approach

36

Kafka Pulsar

Producer Idempotency Best-effort (in memory only) Guaranteed after crash

Transactions 2 phase commit No transactions

Dedup across producer
sessions No Yes

Dedup with geo-
replication No Yes

Throughput Lower (1 in-flight message/batch for
ordering) Equal

Curious to Learn More?

• Apache Pulsar — https://pulsar.incubator.apache.org

• Follow Us — @apache_pulsar

• Streamlio blog — https://streaml.io/blog

37

http://pulsar.incubator.apache.org
https://twitter.com/apache_pulsar
https://streaml.io/blog

