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Anomaly Detection at Uber: the Business Angle

Our mission

More reliable and safer transportation everywhere,
for everyone



Anomaly Detection at Uber: the Business Angle

An important component

Reliability of the App



Anomaly Detection at Uber: the Business Angle

Uber’s app is different

Nobody is “just browsing”

Unusually high cost of outages

▪ Transactions permanently lost
▪ Costs magnified by the scale of the business



Anomaly Detection at Uber: the Business Angle

Great opportunity for cost saving

About $8M saved last year

Through intelligent, automated on-call alerting

▪ Conservative estimate



The Scale of the Problem

What does it take to ensure a reliable app?



The Scale of the Problem

An ecosystem of microservices



The Scale of the Problem

An ecosystem of microservices

Each service has multiple traces to monitor

Powerful combinatorics: x geo x product

more than 1 billion traces



The Scale of the Problem

Compounded challenges

High Cardinality
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The Scale of the Problem

Compounded challenges

Variety of patterns

… and others



The Scale of the Problem

Compounded challenges

Speed of detection

1-minute granularity in most situations and whenever possible



Our Solution

The nature of the problem calls for … 

Rationale

▪ Data rich situation
▪ Complex patterns
▪ Interrelated inputs
▪ Necessity of automation and speed



Our Solution

The nature of the problem calls for … 

A Machine Learning Platform

Rationale

▪ Data rich situation
▪ Complex patterns
▪ Interrelated inputs
▪ Necessity of automation and speed



Anomaly Detection Platform

▪ At the core, the platform implements a stream of binary classifiers

Detection Window

History

+
Additional Inputs…             

Yes

No

Is It Anomalous?

Metainfo (e.g. events) 
… or … 



Anomaly Detection Stack

▪ Some models are indeed waveform binary classifiers

▪ Backward looking
▪ Good for new traces
▪ Does not rely on meta 

info



Anomaly Detection Stack

▪ But most carry out a density forecast behind the scenes

▪ Learn from the past
▪ Forecast our expectations…
▪ … and our uncertainty
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Anomaly Detection Stack

▪ But most carry out a density forecast behind the scenes

▪ Learn from the past
▪ Forecast our expectations…
▪ … and our uncertainty
▪ Compare with the actuals

Anomaly



Anomaly Detection Stack

▪ Two types of forecasting models

Distinguished by type of input and by how they learn:

▪ Single time-series models
- Trained online

▪ Models that learn across multiple time series
- Training is slower



The Serving Layer

Even when the models require extensive training, serving needs to be rapid

A Golang Serving Layer

for speed and maximum integration with Uber’s stack.



Review of Forecasting Methods

Many methodologies for time series forecasting

- Traditional models: 
- Moving Average (MA), 
- Autoregression (AR), 
- ARMA, 
- Etc.

- Exponential smoothing family: 
- Exponential smoothing
- Holt-Winters

- Decomposition-based models: 
- Theta method
- Spline regression
- Prophet

- Proprietary models

https://github.com/facebook/prophet


Forecasting with Neural Networks

Use recurrent neural network forecasting

- Capable of dealing with huge amounts of data
- Has some memory of the past
- Not just univariate, could make use of other features
- Neural network could adopt many model shapes



Recurrent Neural Networks

▪ Inputs are sequential
- Apply to cases like language processing, time series, etc

▪ Model has some memory of the past
- Remember previous look-back steps

     Plots from: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



Long short-term memory (LSTM) cell, a special RNN cell

Repeat

● Capable of learning long-term dependencies
● Solves the vanishing gradient problem

Recurrent Neural Networks

     Plots from: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Three gates:

- Forget gate
- Input gate
- Output gate

Can accommodate both long 
and short term memory

- Selective memory

Inside the LSTM Cell

Plots from: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Forecasting with Recurrent Neural Networks

Model

- Two LSTM layers and one dense 
layer

- Window-wide scaling of input and 
output

- Adam optimization
- Minimizing absolute error instead of 

squared error
- Decaying learning rate



Window-wide scaling of input and output

Min-max range scale 

Scaling Inputs and Outputs

Single window The entire time series



Decaying learning rate

▪ Learning rate
- Decay by epoch
- Decay rate becomes 

constant after 100 
epochs

Learning Rate



Training Input and Output

Input

- Multiple time series
- Time series of different topics
- Minute tile
- Treated as different samples

- Look back
- One day

- Features
- Last 30 minutes

Output

- Next 30 minutes

Input

- Same as before except for

- Features
- Last 30 minutes + last week same 

time as prediction window

Output

- Next 30 minutes

V0 V1



Model Performance
▪ Performance measured out-of-sample
▪ Each example predicts 30 minutes ahead

V0 wMAPE sMAPE

Median 7.18 6.98

Mean 27.64 18.99

V1 wMAPE sMAPE

Median 7.38 6.60

Mean 25.06 18.02

wMAPE: weighted mean absolute percentage error
sMAPE: symmetric mean absolute percentage error

https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error


▪ With forecasting, we still need to 
- Decide on the desired level of confidence
- Estimate prediction interval at a given confidence level

▪ Choose confidence level to adjust sensitivity
▪ Next let’s focus on prediction interval at a given confidence level

Anomaly Detection using RNN



❏ Model uncertainty
❏ Our ignorance of the model parameters

❏ Inherent noise
❏ Irreducible noise level from the random process

Prediction intervals quantify prediction uncertainty. What do we mean by uncertainty?

Prediction
uncertainty

What’s the Prediction Interval?



Prediction Uncertainty

❏ Model uncertainty
❏ Inherent noise

     Plot from: https://analyse-it.com/docs/220/standard/multiple_linear_regression.htm



❏ Model uncertainty
❏ Inherent noise

Prediction Uncertainty

     Plot from: https://analyse-it.com/docs/220/standard/multiple_linear_regression.htm



What does this noise mean?
- Uncertainty produced even if we know the true 

underlying distribution
- Generate 100 data from normal (5, 1) distribution

- Y = 5 + ε where ε is normal(0, 1)
- Model is identity * 5 and no variance
- There’s still inherent noise in ε 

How to estimate noise?
- One possible way: compute 

residual sum of squares (RSS) to 
estimate noise

Estimating Inherent Noise



Random dropout during serving

Model uncertainty
Input: 

X*, dropout probability p, repetition T=500

Algorithm:
1. Repeat T stochastic feed-forward passes
2. Collect predictions Y1, …, YT

Output:
Sample variance ᵫM

2

Estimating Model Uncertainty

Methodology: Gal (2016), Uncertainty in Deep Learning, PhD Thesis  
Plot: http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html



Estimating Model Uncertainty

Pass 1

Model uncertainty
Input: 

X*, dropout probability p, repetition T=500

Algorithm:
1. Repeat T stochastic feed-forward passes
2. Collect predictions Y1, …, YT

Output:
Sample variance ᵫM

2

Methodology: Gal (2016), Uncertainty in Deep Learning, PhD Thesis  
Plot: http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html



Estimating Model Uncertainty

Pass 2

Model uncertainty
Input: 

X*, dropout probability p, repetition T=500

Algorithm:
1. Repeat T stochastic feed-forward passes
2. Collect predictions Y1, …, YT

Output:
Sample variance ᵫM

2

Methodology: Gal (2016), Uncertainty in Deep Learning, PhD Thesis  
Plot: http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html



Estimating Model Uncertainty

Pass 3

Model uncertainty
Input: 

X*, dropout probability p, repetition T=500

Algorithm:
1. Repeat T stochastic feed-forward passes
2. Collect predictions Y1, …, YT

Output:
Sample variance ᵫM

2

Methodology: Gal (2016), Uncertainty in Deep Learning, PhD Thesis  
Plot: http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html



Estimating Model Uncertainty

Pass 4

Model uncertainty
Input: 

X*, dropout probability p, repetition T=500

Algorithm:
1. Repeat T stochastic feed-forward passes
2. Collect predictions Y1, …, YT

Output:
Sample variance ᵫM

2

Methodology: Gal (2016), Uncertainty in Deep Learning, PhD Thesis  
Plot: http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html



Train the neural 
network

Obtain prediction and 
model uncertainty

Training data

New data

Step 1

Step 2

Fit the weights

Validation data
Use the trained model 
to estimate noise 
level

Prediction
uncertainty

Step 3

Repeat random dropout

Flow of Forecasting and Uncertainty Estimation

Methodology:    Gal (2016), Uncertainty in Deep Learning, PhD Thesis     
   Plots: http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html

Inherent noise 
estimate



Input
- Look back

- 28 days
- Features

- Trip value
- Holiday info
- Calendar features

Output
- Next 5 days

Forecasting Daily Trips with Uncertainty

Uber Blog: Engineering Uncertainty Estimation in Neural Networks for Time Series Prediction at Uber



Forecasting Daily Trips with Uncertainty

Prediction with 95% prediction interval

Uber Blog: Engineering Uncertainty Estimation in Neural Networks for Time Series Prediction at Uber



Future Developments

Model Improvements

- Truncated backpropagation through time
- Longer memory without vanishing gradients

- More feature engineering
- Summary features: e.g. mean or quantiles

- Additional methods to deal with seasonality within NNs
- Calendar features: hour of day, day of week
- Per hour of day/week models

- Transfer learning



Thank you!
Any questions?

Learn more about Anomaly Detection at UBER!

- Engineering Uncertainty Estimation in Neural Networks for Time Series Prediction at Uber
- Engineering Extreme Event Forecasting at Uber with Recurrent Neural Networks
- Anomaly Detection
- Identifying Outages with Argos, Uber Engineering’s Real-Time Monitoring and Root-Cause Exploration 

Tool

https://eng.uber.com/neural-networks-uncertainty-estimation/
https://eng.uber.com/neural-networks/
https://eng.uber.com/anomaly-detection/
https://eng.uber.com/argos/?lipi=urn%3Ali%3Apage%3Ad_flagship3_profile_view_base_treasury%3Bd2AB48DeRuahtB1Se0Enfw%3D%3D
https://eng.uber.com/argos/?lipi=urn%3Ali%3Apage%3Ad_flagship3_profile_view_base_treasury%3Bd2AB48DeRuahtB1Se0Enfw%3D%3D
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