Presented By O'Reilly and Cloudera
Make Data Work
December 1–3, 2015 • Singapore

Modeling machine failure in the IoT era

Danielle Dean (iRobot)
4:00pm–4:40pm Wednesday, 12/02/2015
IoT and Real-time
Location: 324 Level: Intermediate
Tags: iot
Average rating: ****.
(4.50, 6 ratings)

Prerequisite Knowledge

Basic data science knowledge (regression, classification) is useful but not necessary.


Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. In a broader sense, it covers a variety of topics, including but not limited to: failure prediction, failure diagnosis, failure type classification, and recommendation of maintenance actions after failure. Along with the emerging demand of Internet of Things (IoT) applications and the maturity of supporting technologies, it is gaining increasing attention in the manufacturing industry, where maintenance should either be conducted for an asset of interest, or a complex manufacturing process. This talk introduces the landscape and challenges of predictive maintenance applications in the manufacturing industry, including different problem coverage, different applicable predictive models based on data available, and the knowledge about what data is recommended to collect for performing predictive maintenance tasks.

In the context of predictive maintenance applications, we focus on the big data analytics aspects. We review the predictive maintenance problems from two perspectives: from the view of the traditional reliability-centered maintenance field; and from the view of the IoT applications. We emphasize bridging the data-driven approach and the problem-driven approach by articulating what types of data are requested for different predictive maintenance applications. We strive to bring the attention of IoT industry leaders to the necessary data acquisition required before conducting effective predictive maintenance applications.

This talk is targeted to data scientists, students, researchers, and non-technical professionals who are interested in data-driven predictive maintenance applications in the manufacturing industry. The audience will learn hands-on experience about how to formulate a predictive maintenance problem into three different machine learning models (regression, binary classification, and multi-class classification) through a real-world example. This is illustrated by showing a step-by-step procedure of data input, data preprocessing, and data labeling, and feature engineering to prepare the training/testing data from the raw data. Last, we illustrate how various types of learning models can be trained and compared with different algorithms.

Photo of Danielle Dean

Danielle Dean


Danielle Dean is the technical director of machine learning at iRobot. Previously, she was a principal data science lead at Microsoft. She holds a PhD in quantitative psychology from the University of North Carolina at Chapel Hill.

Comments on this page are now closed.


Stefan Bisang
12/05/2015 4:27pm +08

Any change to get the slides?