Presented by O'Reilly and Cloudera
Make Data Work
July 12-13, 2017: Training
July 13-15, 2017: Tutorials & Conference
Beijing, China

数据驱动企业增长 (Data-driven business growth)

此演讲使用中文 (This will be presented in Chinese)

ximeng zhang (GrowingIO)
13:10–13:50 Friday, 2017-07-14
数据科学&高级分析 (Data science & advanced analytics)
Location: 多功能厅6A+B(Function Room 6A+B) 观众水平 (Level): 高级 (Advanced)
平均得分:: *****
(5.00, 1 次得分)

必要预备知识 (Prerequisite Knowledge)


您将学到什么 (What you'll learn)

首先,数据驱动需要得到大家的认知才能产生为企业带来价值的影响; 其次,数据分析完善的方法论; 最后,使用什么样的工作达到什么样的效果;

描述 (Description)


Ximeng Zhang explains how to do full-spectrum data collection without manual tracking codes in only three lines of code (with support for the web, iOS, Android, and HTML5). You can track users’ browsing and click data and other behavior. Ximeng also covers intelligent analytic functions, how to implement intelligent traverse path, retention magician, how to provide various types of statistical analysis based on full spectrum data, how to obtain the best path with the highest conversions rate in just one key stroke, and how to automatically find user behavior patterns and transform them into conversion funnels and visualize them in seconds. Along the way, you’ll learn how to help customers better understand their own products via machine learning, provide real-time decision-making support for rapid iterations during development, and build platforms for machine learning.

Photo of ximeng zhang

ximeng zhang


GrowingIO 创始人& CEO,硅谷十三年数据分析经历,亲手建立 LinkedIn 百人商务分析和数据科学团队,支撑 LinkedIn 所有与营收相关业务的高速增长。Data Science Central 评选其为“世界前十位前沿数据科学家”。
2015 年 5 月,创办基于用户行为的新一代数据分析产品 — GrowingIO,无需埋点即可采集全量、实时用户行为数据,帮助管理者、产品经理、市场运营、数据分析师、增长黑客提升转化率、优化网站/APP,实现数据驱动业务和用户增长。
GrowingIO 获得《快公司》评选的 2015 年中国最佳创新公司 50 强,并获得经纬中国、NEA、Greylock A 轮2000万美元融资。

Connect with O'ReillyData

Use the QR Code to follow OReillyData and get the latest conference information and browse data articles.

WeChat QRcode


Stay Connected Image 1
Stay Connected Image 3
Stay Connected Image 2

Read the latest ideas on big data.

ORB Data Site