

Datadog: A Real-Time Metrics Database for Trillions of Points/Day

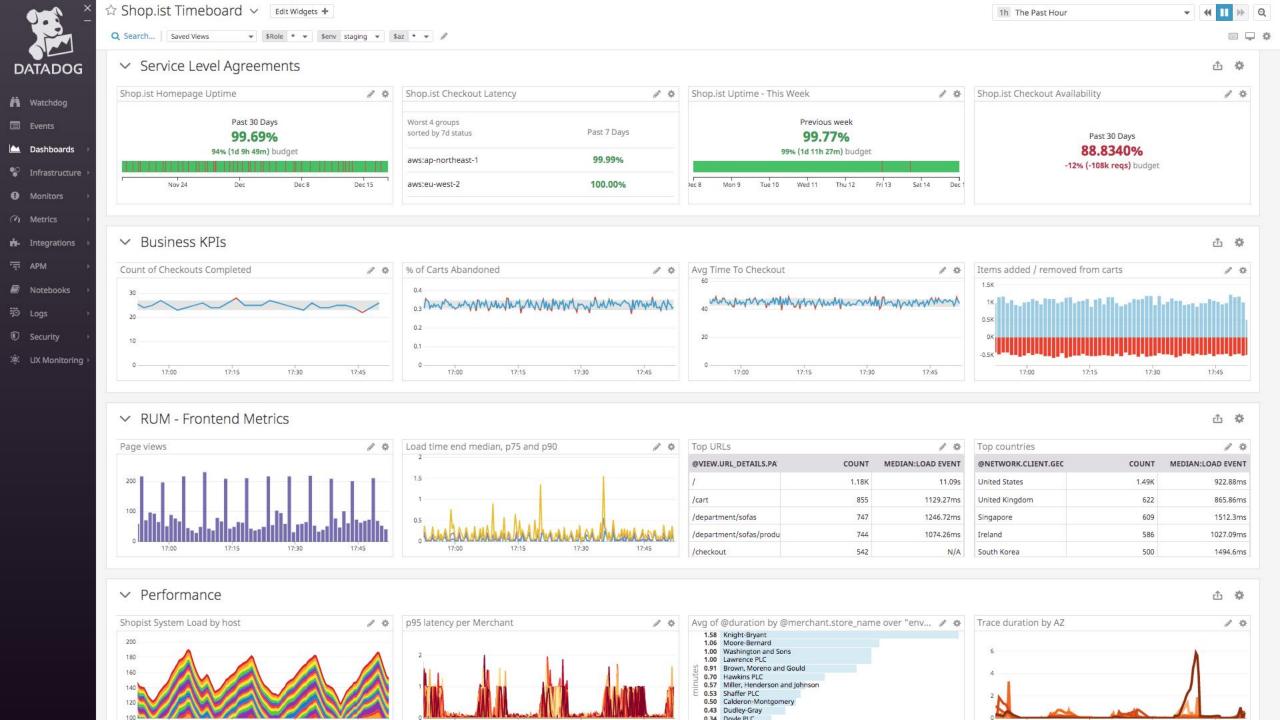
Joel BARCIAUSKAS (https://twitter.com/JoelBarciauskas)
Director, Aggregation Metrics

SACON '20

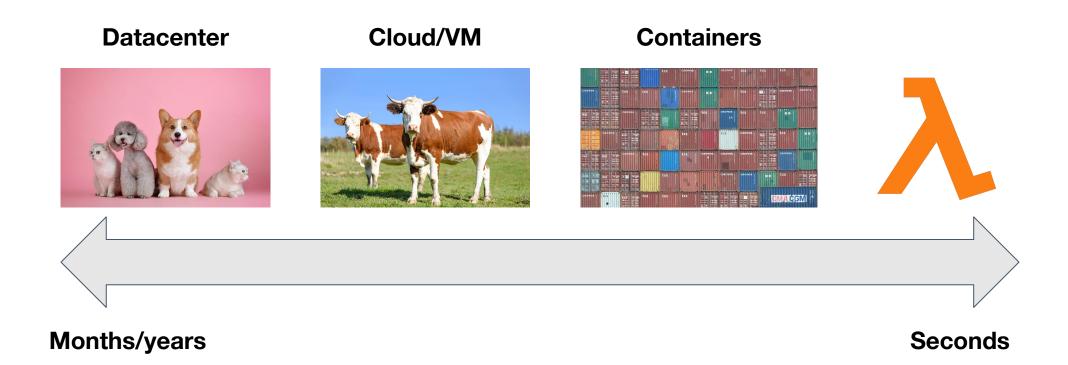
Trillions of points per day

10 ⁴	Number of apps; 1,000's hosts times 10's containers
10 ³	Number of metrics emitted from each app/container
10 ⁰	1 point a second per metric
10 ⁵	Seconds in a day (actually 86,400)

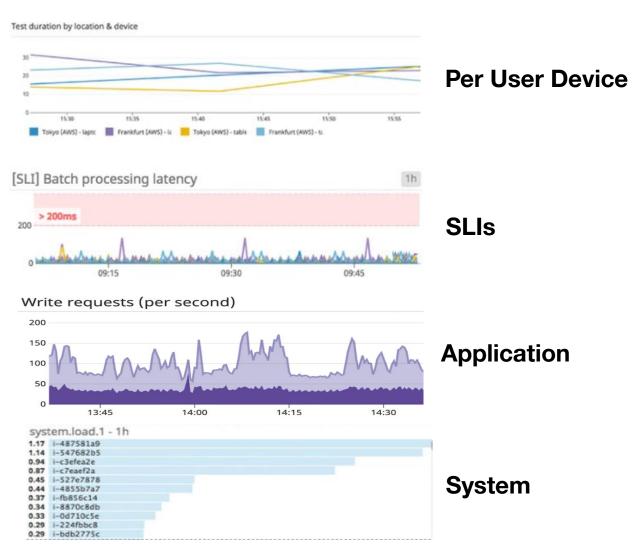
$$10^4 \times 10^3 \times 10^5 = 10^{12}$$

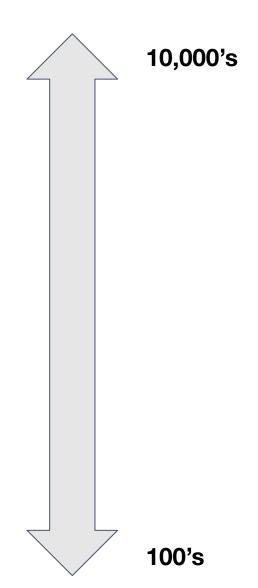


Decreasing Infrastructure Lifecycle



Increasing Granularity





Tackling performance challenges

- Don't do it
- Do it, but don't do it again
- Do it less
- Do it later
- Do it when they're not looking
- Do it concurrently
- Do it cheaper

*From Craig Hanson and Pat Crain, and the performance engineering community - see http://www.brendangregg.com/methodology.html

Talk Plan

- 1. Our Architecture
- 2. Deep Dive On Our Datastores
- 3. Handling Synchronization
- 4. Approximation For Deeper Insights
- 5. Enabling Flexible Architecture

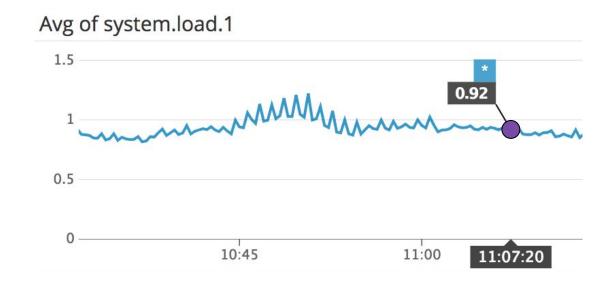
Talk Plan

- 1. Our Architecture
- 2. Deep Dive On Our Datastores
- 3. Handling Synchronization
- 4. Approximation For Deeper Insights
- 5. Enabling Flexible Architecture

Example Metrics Query 1

"What is the system load on instance i-xyz across the last 30 minutes"

A Time Series



metric	system.load.1
timestamp	1526382440
value	0.92
tags	host:i-xyz,env:dev,

Tags for all the dimensions

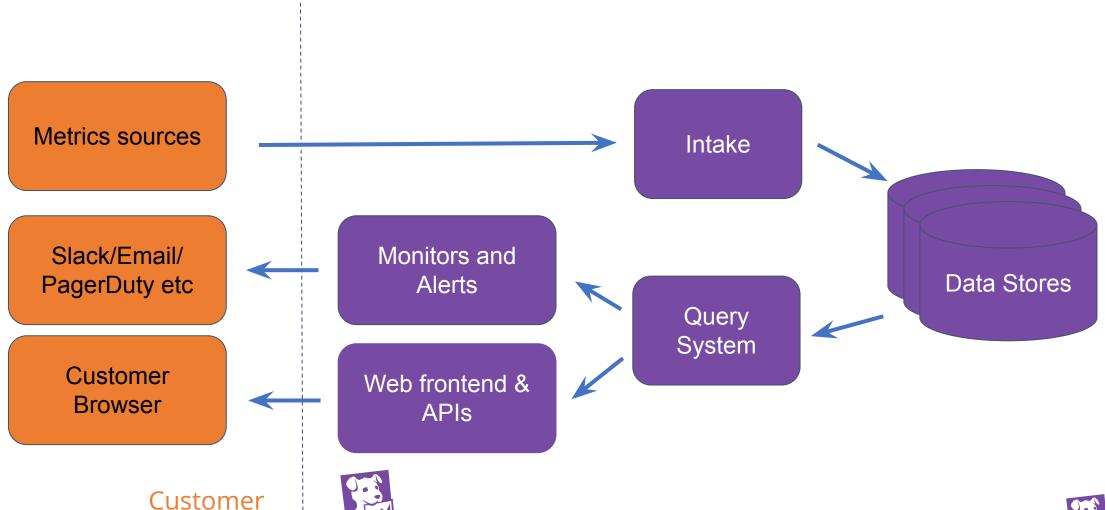
Host / container: system metrics by host

Application: internal cache hit rates, timers by module

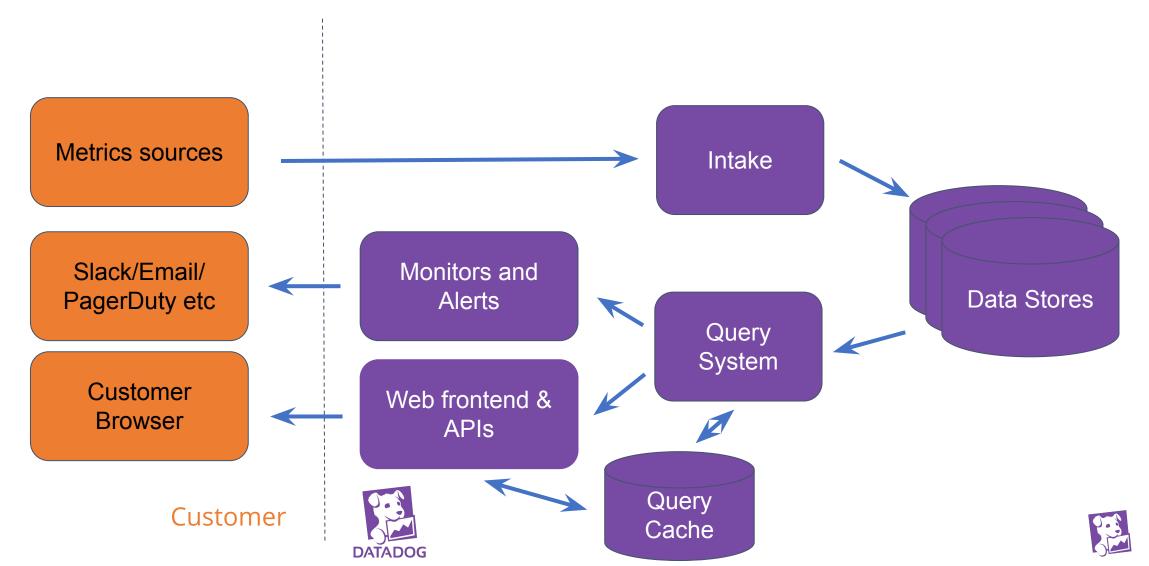
Service: hits, latencies or errors/s by path and/or response code

Business: # of orders processed, \$'s per second by customer ID

Pipeline Architecture



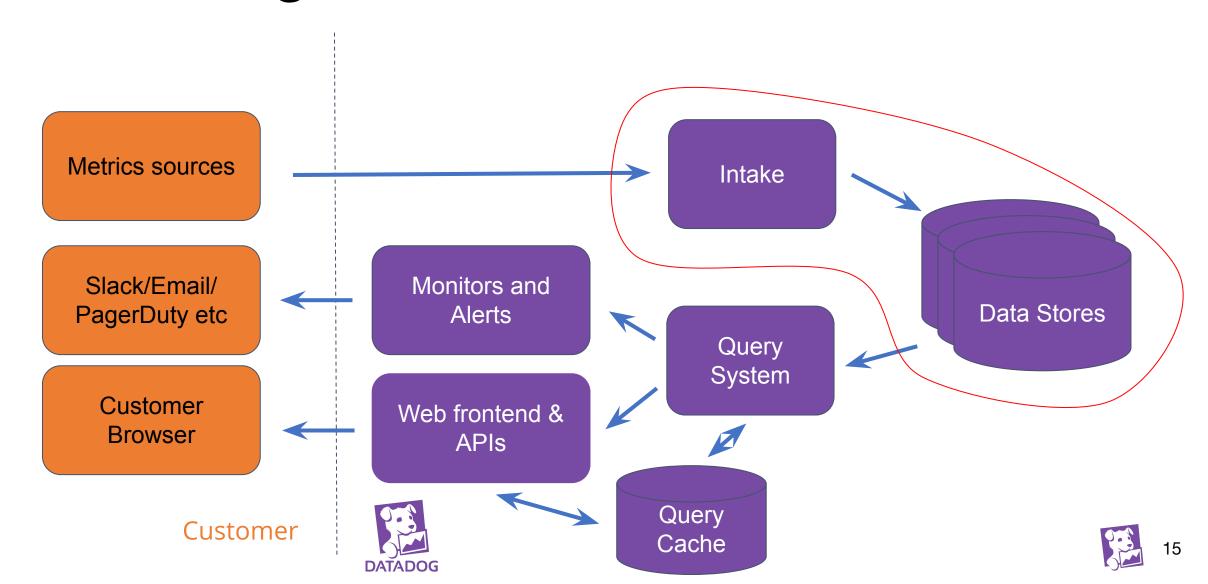
Caching timeseries data



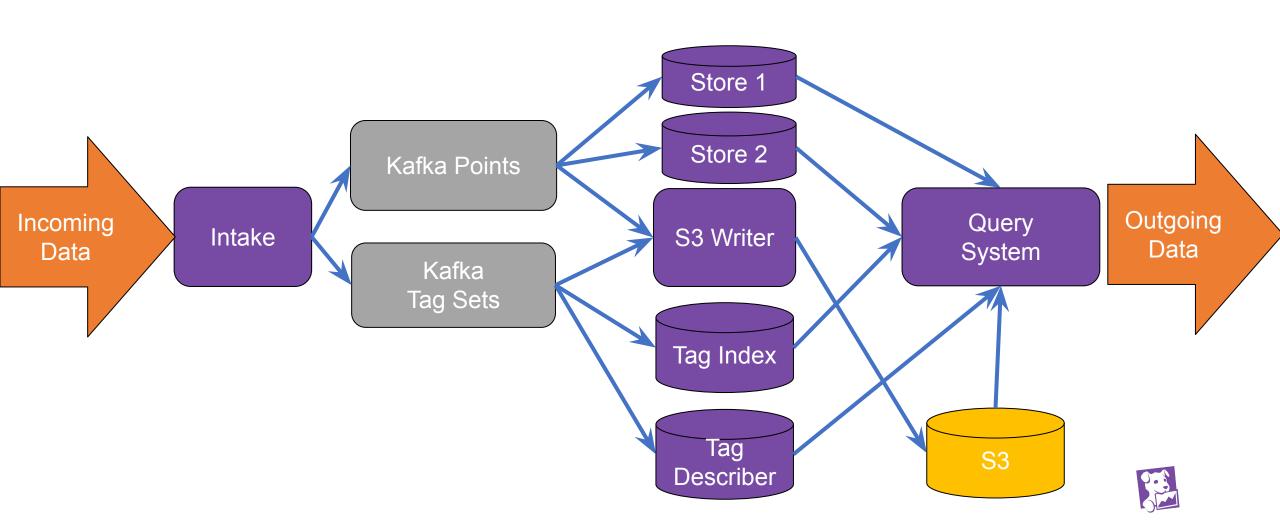
Performance mantras

- Don't do it
- Do it, but don't do it again cache as much as you can
- Do it less
- Do it later
- Do it when they're not looking
- Do it concurrently
- Do it cheaper

Zooming in



Kafka for Independent Storage Systems



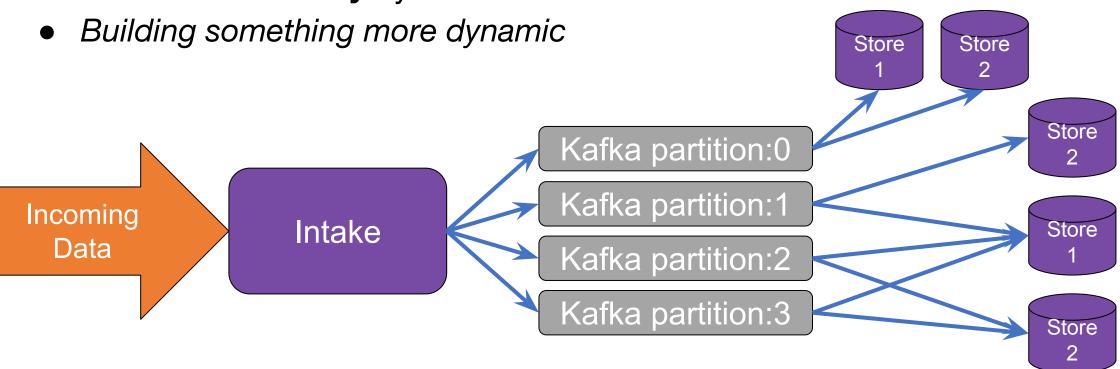
Performance mantras

- Don't do it
- Do it, but don't do it again cache as much as you can
- Do it less
- Do it later minimize upfront processing
- Do it when they're not looking
- Do it concurrently
- Do it cheaper

Scaling through Kafka

Partition by customer, metric, tag set

- Isolate by customer
- Scale concurrently by metric



Performance mantras

- Don't do it
- Do it, but don't do it again cache as much as you can
- Do it less
- Do it later minimize upfront processing
- Do it when they're not looking
- Do it concurrently spread data across independent, scalable data stores
- Do it cheaper

Talk Plan

- 1. Our Architecture
- 2. Deep Dive On Our Datastores
- 3. Handling Synchronization
- 4. Approximation For Deeper Insights
- 5. Enabling Flexible Architecture

Trillions of points per day

10 ⁴	Number of apps; 1,000's hosts times 10's containers
10 ³	Number of metrics emitted from each app/container
10 ⁰	1 point a second per metric
10 ⁵	Seconds in a day (actually 86,400)

$$10^4 \times 10^3 \times 10^5 = 10^{12}$$

Per Customer Volume Ballparking

10 ⁴	Number of apps; 1,000's hosts times 10's containers
10 ³	Number of metrics emitted from each app/container
10 ⁰	1 point a second per metric
10 ⁵	Seconds in a day (actually 86,400)
10 ¹	Bytes/point (8 byte float, amortized tags)
= 10 ¹³	10 Terabytes a Day For One Customer

Cloud Storage Characteristics

Туре	Max Capacity	Bandwidth	Latency	Cost/TB for 1 month	Volatility
DRAM ¹	4 TB	80 GB/s	0.08 us	\$1,000	Instance Reboot
SSD ²	60 TB	12 GB/s	1 us	\$60	Instance Failures
EBS io1	432 TB	12 GB/s	40 us	\$400	Data Center Failures
S3	Infinite	12 GB/s ³	100+ ms	\$214	11 nines durability
Glacier	Infinite	12 GB/s ³	hours	\$4 ⁴	11 nines durability

- 1. X1e.32xlarge, 3 year non convertible, no upfront reserved instance
- 2. i3en.24xlarge, 3 year non convertible, no upfront reserved instance
- 3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
- 4. Storage Cost only

Volume Math

- 80 x1e.32xlarge DRAM
- \$300,000 to store for a month
- This is with no indexes or overhead
- And people want to query much more than a month.

Cloud Storage Characteristics

Туре	Max Capacity	Bandwidth	Latency	Cost/TB for 1 month	Volatility
DRAM ¹	4 TB	80 GB/s	0.08 us	\$1,000	Instance Reboot
SSD ²	60 TB	12 GB/s	1 us	\$60	Instance Failures
EBS io1	432 TB	12 GB/s	40 us	\$400	Data Center Failures
S3	Infinite	12 GB/s ³	100+ ms	\$214	11 nines durability
Glacier	Infinite	12 GB/s ³	hours	\$44	11 nines durability

- 1. X1e.32xlarge, 3 year non convertible, no upfront reserved instance
- 2. i3en.24xlarge, 3 year non convertible, no upfront reserved instance
- 3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
- 4. Storage Cost only

Cloud Storage Characteristics

Туре	Max Capacity	Bandwidth	Latency	Cost/TB for 1 month	Volatility
DRAM ¹	4 TB	80 GB/s	0.08 us	\$1,000	Instance Reboot
SSD ²	60 TB	12 GB/s	1 us	\$60	Instance Failures
EBS io1	432 TB	12 GB/s	40 us	\$400	Data Center Failures
S3	Infinite	12 GB/s ³	100+ ms	\$21 ⁴	11 nines durability
Glacier	Infinite	12 GB/s ³	hours	\$4 ⁴	11 nines durability

- 1. X1e.32xlarge, 3 year non convertible, no upfront reserved instance
- 2. i3en.24xlarge, 3 year non convertible, no upfront reserved instance
- 3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
- 4. Storage Cost only

Queries We Need to Support

DESCRIBE TAGS	What tags are queryable for this metric?
TAG INDEX	Given a time series id, what tags were used?
TAG INVERTED INDEX	Given some tags and a time range, what were the time series ingested?
POINT STORE	What are the values of a time series between two times?

Performance mantras

- Don't do it
- Do it, but don't do it again query caching
- Do it less only index what you need
- Do it later minimize upfront processing
- Do it when they're not looking
- Do it concurrently use independent horizontally scalable data stores
- Do it cheaper

Hybrid Data Storage

DESCRIBE TAGS

TAG INDEX

TAG INVERTED INDEX

POINT STORE

QUERY RESULTS

Hybrid Data Storage

System	Туре	Persistence
DESCRIBE TAGS	Local SSD	Years
TAG INDEX	DRAM	Cache (Hours)
	Local SSD	Years
TAG INVERTED INDEX	DRAM	Hours
	On SSD	Days
	S3	Years
POINT STORE	DRAM	Hours
	Local SSD	Days
	S3	Years
QUERY RESULTS	DRAM	Cache (Days)

Hybrid Data Storage

System	Туре	Persistence	Technology	Why?
DESCRIBE TAGS	Local SSD	Years	LevelDB	High performing single node k,v
TAG INDEX	DRAM	Cache (Hours)	Redis	Very high performance, in memory k,v
	Local SSD	Years	Cassandra	Horizontal scaling, persistent k,v
TAG INVERTED INDEX	DRAM	Hours	In house	Very customized index data structures
	On SSD	Days	RocksDB + SQLite	Rich and flexible queries
	S3	Years	Parquet	Flexible Schema over time
POINT STORE	DRAM	Hours	In house	Very customized index data structures
	Local SSD	Days	In house	Very customized index data structures
	S3	Years	Parquet	Flexible Schema over time
QUERY RESULTS	DRAM	Cache (Days)	Redis	Very high performance, in memory k,v

Performance mantras

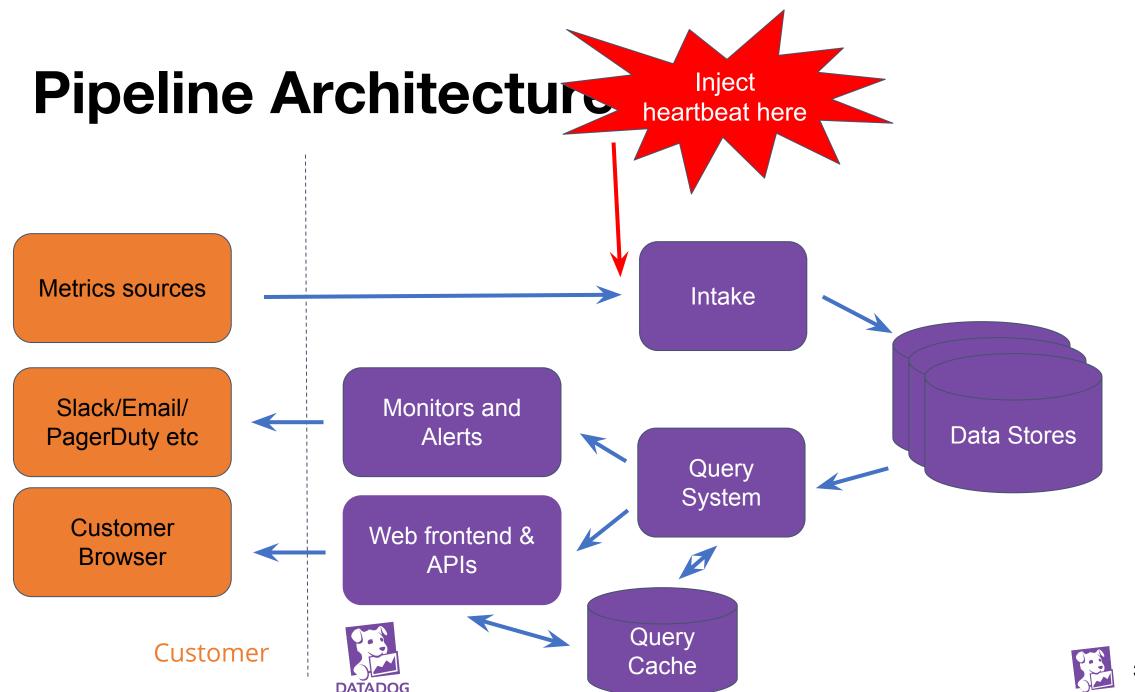
- Don't do it
- Do it, but don't do it again query caching
- Do it less only index what you need
- Do it later minimize upfront processing
- Do it when they're not looking
- Do it concurrently use independent horizontally scalable data stores
- Do it cheaper match data latency requirements to cost

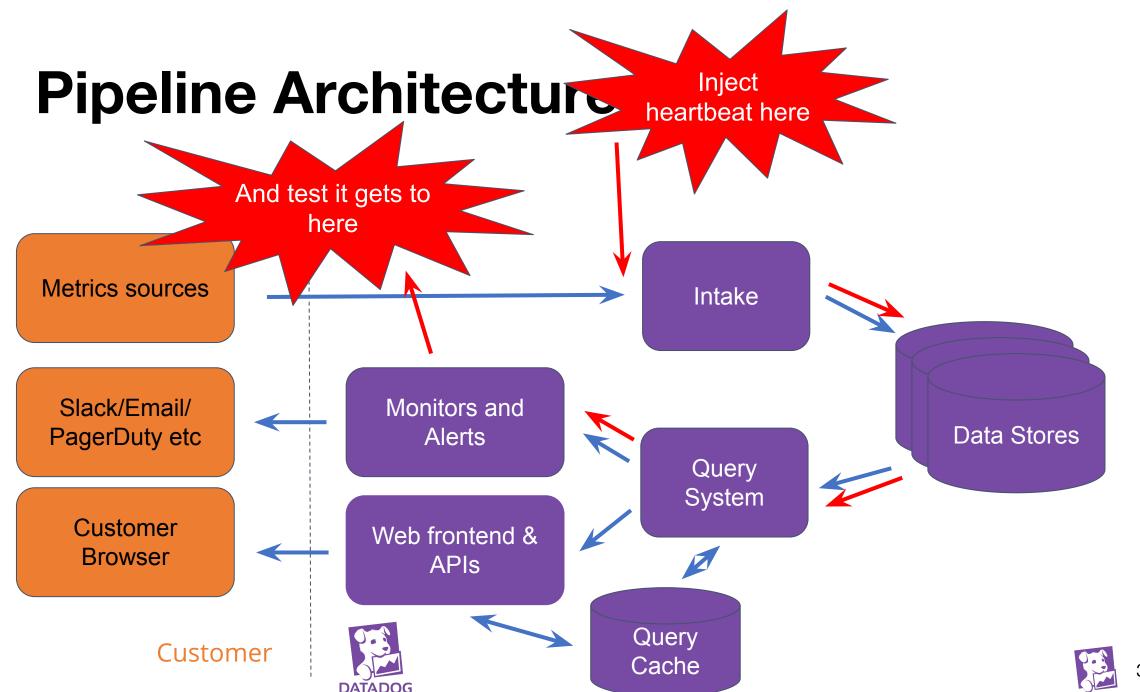
Talk Plan

- 1. Our Architecture
- 2. Deep Dive On Our Datastores
- 3. Handling Synchronization
- 4. Approximation For Deeper Insights
- 5. Enabling Flexible Architecture

Alerts/Monitors Synchronization

- Required to prevent false positives
- Need all data for the evaluation time period is ready





Performance mantras

- Don't do it build the minimal synchronization needed
- Do it, but don't do it again query caching
- Do it less only index what you need
- Do it later minimize upfront processing
- Do it when they're not looking
- Do it concurrently use independent horizontally scalable data stores
- Do it cheaper match data latency requirements to cost

Talk Plan

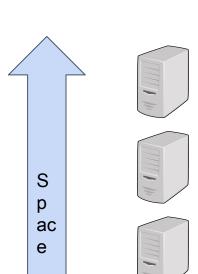
- 1. Our Architecture
- 2. Deep Dive On Our Datastores
- 3. Handling Synchronization
- 4. Approximation For Deeper Insights
- 5. Enabling Flexible Architecture

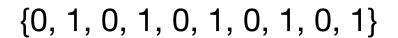
Types of metrics

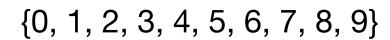
Counter, aggregate by sum Ex: Requests, errors/s, total time spent (stopwatch)

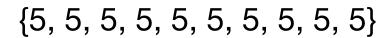
Gauges, aggregate by last or avg
Ex: CPU/network/disk use,
queue length

Aggregation for counters and gauges









{0, 2, 4, 8, 16, 32, 64, 128, 256, 512}

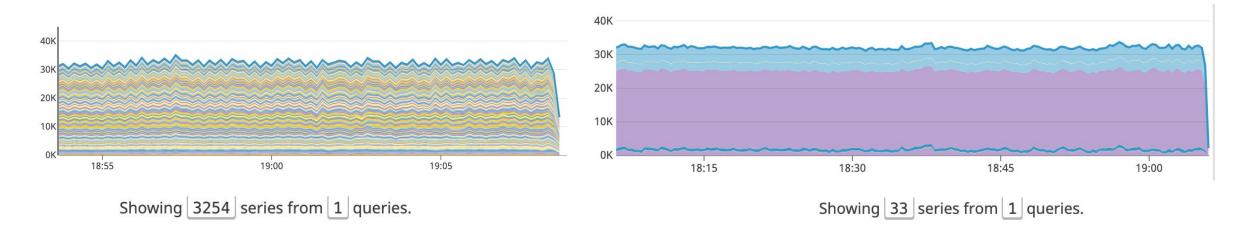
Query output

Counters: {5, 40, 50, 1023}

Gauges (average): {0.5, 4, 5, 102.3}

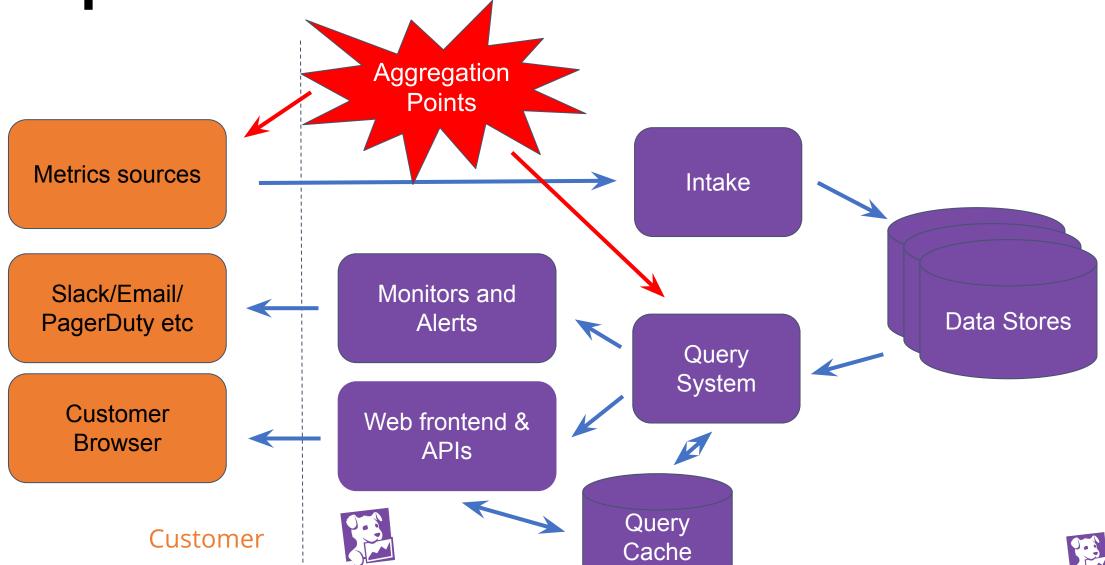
Gauges (last): {1, 9, 5, 512}

Focus on outputs

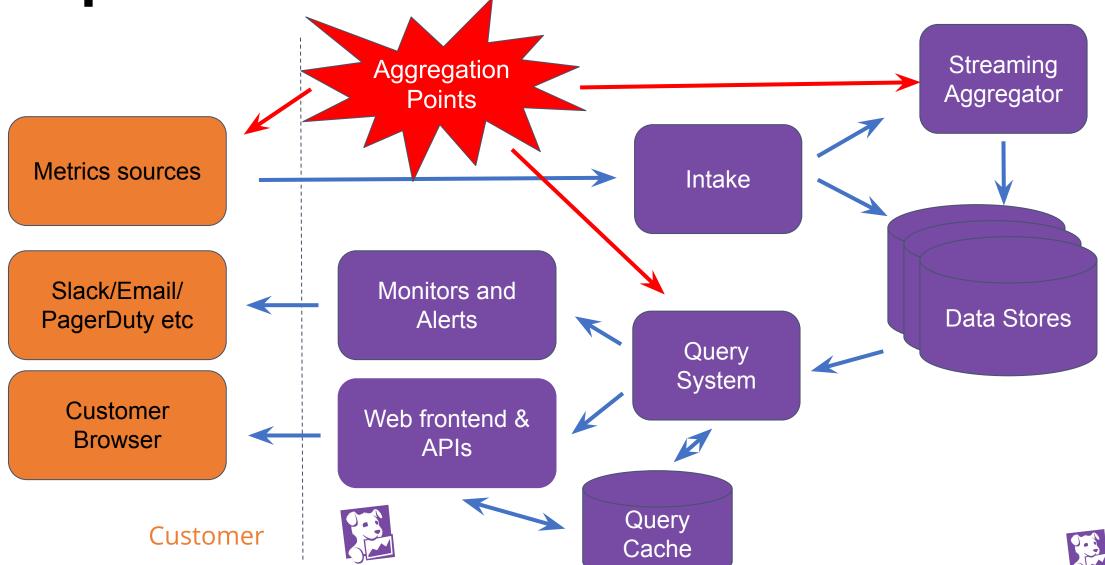


These graphs are *both* aggregating 70k series Output 20 to 2000 times less series than input

Pipeline Architecture



Pipeline Architecture

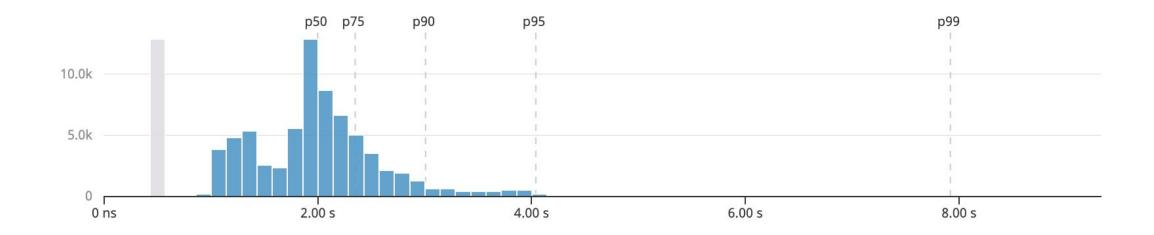


Pipeline Architecture No one's looking here! Streaming Aggregation Aggregator **Points** Metrics sources Intake Monitors and Slack/Email/ **Data Stores** PagerDuty etc Alerts Query System Customer Web frontend & Browser APIs Query Customer Cache

Performance mantras

- Don't do it build the minimal synchronization needed
- Do it, but don't do it again query caching
- Do it less only index what you need
- Do it later minimize processing on path to persistence
- Do it when they're not looking pre-aggregate
- Do it concurrently use independent horizontally scalable data stores
- Do it cheaper use hybrid data storage types and technologies

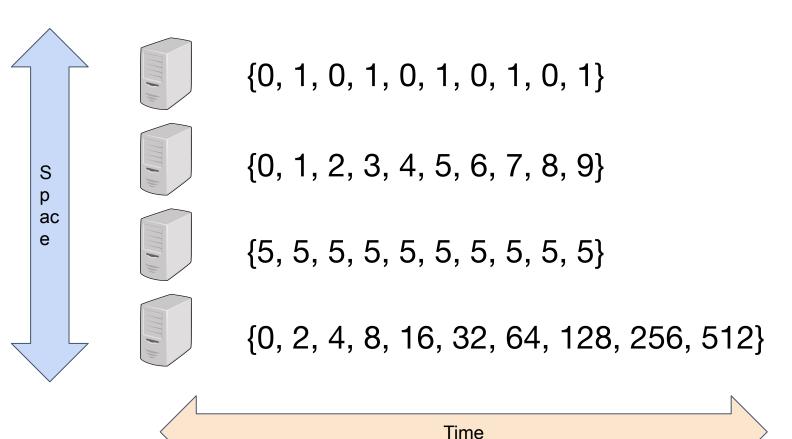
Distributions



Aggregate by percentile or SLO (count of values above or below a threshold)

Ex: Latency, request size

Calculating distributions



Performance mantras

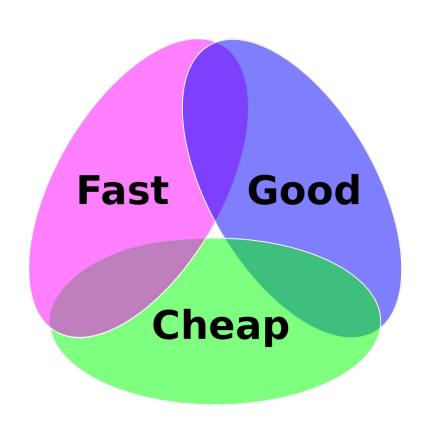
- Don't do it build the minimal synchronization needed
- Do it, but don't do it again query caching
- Do it less only index what you need
- Do it later minimize upfront processing
- Do it when they're not looking
- Do it concurrently use independent horizontally scalable data stores
- Do it cheaper again?

Tradeoffs

Engineering triangle - fast, good or cheap

What's the universe of valid values? (inputs)

What are common queries? (outputs)



Sketches

Data structures designed for operating on streams of data

Examine each item a limited number of times (ideally once)

Limited memory usage (logarithmic to the size of the stream,

or fixed)

You may know these sketches

HyperLogLog

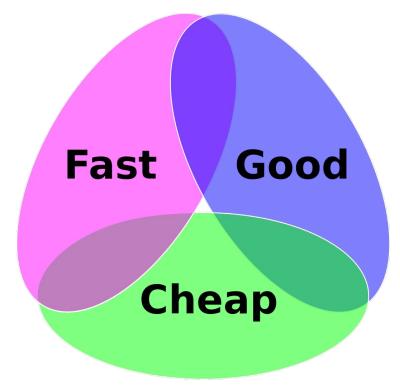
- Cardinality / unique count estimation
- Used in Redis PFADD, PFCOUNT, PFMERGE

Others: Bloom filters (also for set membership), frequency sketches (top-N lists)

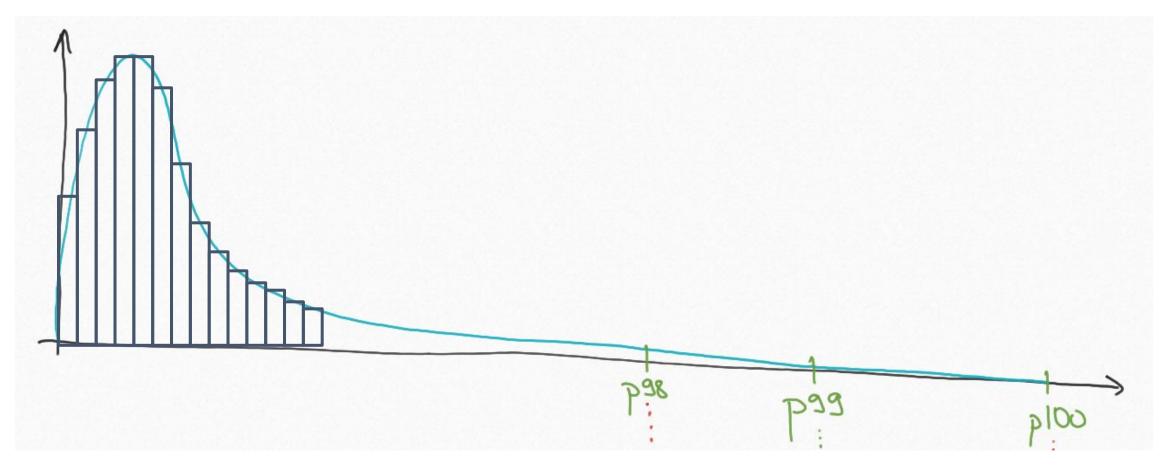
Approximation for distribution metrics

What's important for approximating distribution metrics?

- Good: accurate
- Fast: quick insertion & queries
- Cheap: bounded-size storage



Approximating a distribution



Bucketed histograms

Basic example from OpenMetrics / Prometheus

```
# HELP http_request_duration_seconds A histogram of the request duration.
# TYPE http_request_duration_seconds histogram
http_request_duration_seconds_bucket{le="0.05"} 24054
http_request_duration_seconds_bucket{le="0.1"} 33444
http_request_duration_seconds_bucket{le="0.2"} 100392
http_request_duration_seconds_bucket{le="0.5"} 129389
http_request_duration_seconds_bucket{le="1"} 133988
http_request_duration_seconds_bucket{le="+Inf"} 144320
http_request_duration_seconds_sum 53423
http_request_duration_seconds_count 144320
```

Bucketed histograms

Basic example from OpenMetrics / Prometheus

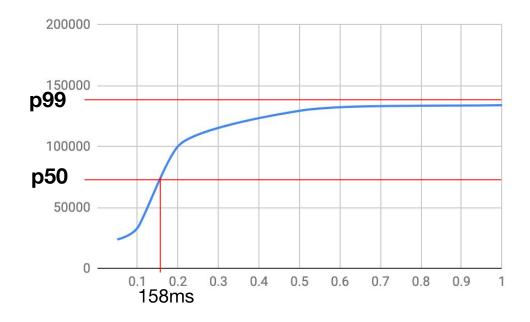
Time spent	Count	median = ~158ms (using linear interpolation)
<= 0.05 (50ms)	24054	p99 = ?!
<= 0.1 (100ms)	33444	200000
<= 0.2 (200ms)	100392	750000
<= 0.5 (500ms)	129389	750000
<= 1s	133988	100000
> 1s	144320	72160
		0 158ms

Bucketed histograms

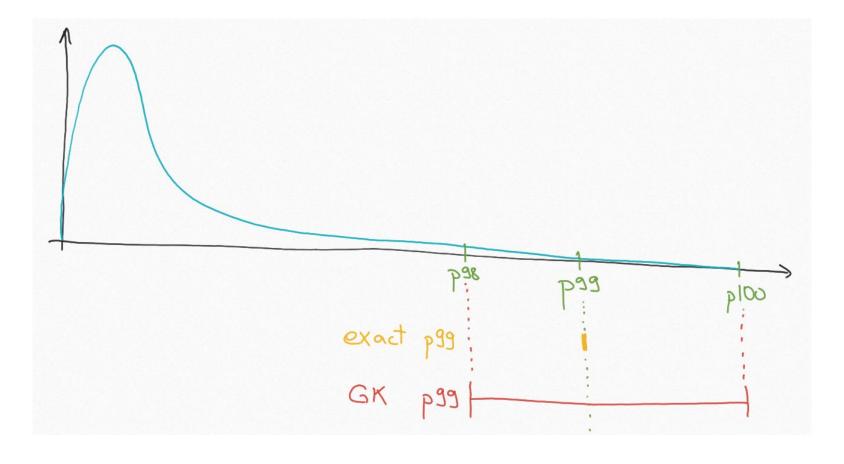
Basic example from OpenMetrics / Prometheus

Time spent	Count
<= 0.05 (50ms)	24054
<= 0.1 (100ms)	33444
<= 0.2 (200ms)	100392
<= 0.5 (500ms)	129389
<= 1s	133988
> 1s	144320

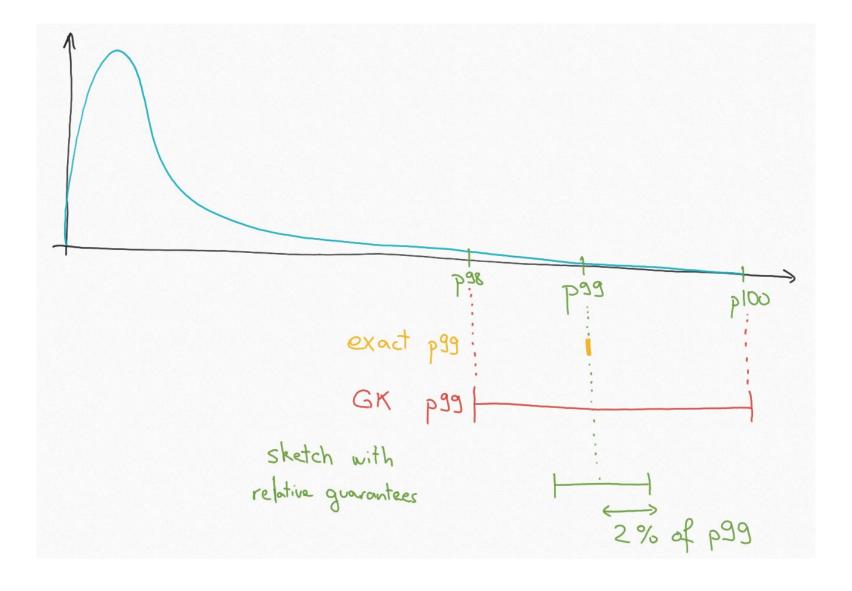
median = ~158ms (using linear interpolation)



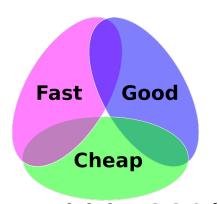
Rank and relative error



Rank and relative error



Good: relative error



Relative error bounds mean we can answer this: Yes, within 99% of requests are <= 500ms +/- 1%

Otherwise stated: 99% of requests are **guaranteed** <= 505ms

Cheap: fixed storage size

With certain distributions, we may reach the maximum number of buckets (in our case, 4000)

 Roll up lower buckets - lower percentiles are generally not as interesting!*

Fast: insertion & query

Each insertion is just two operations - find the bucket, increase the count (sometimes there's an allocation)

Queries look at the fixed number of buckets

DDSketch

DDSketch (Distributed Distribution Sketch) is open source

- Presented at VLDB2019 in August
- Open-source versions in several languages

Python: github.com/DataDog/sketches-py

Java: github.com/DataDog/sketches-java

Go: github.com/DataDog/sketches-go

Performance mantras

- Don't do it build the minimal synchronization needed
- Do it, but don't do it again query caching
- Do it less only index what you need
- Do it later minimize upfront processing
- Do it when they're not looking
- Do it concurrently use independent horizontally scalable data stores
- Do it cheaper leverage approximation

Talk Plan

- 1. Our Architecture
- 2. Deep Dive On Our Datastores
- 3. Handling Synchronization
- 4. Approximation For Deeper Insights
- 5. Enabling Flexible Architecture

Commutativity

"a binary operation is **commutative** if *changing the order* of the operands does not change the result"

Why is this important?

Commutativity

"a binary operation is **commutative** if *changing the order* of the operands does not change the result"

Why is this important?

Distribute aggregation work throughout the pipeline

Pipeline Architecture Streaming Aggregation Aggregator **Points** Metrics sources Intake Monitors and Slack/Email/ Data Stores PagerDuty etc Alerts Query System Customer Web frontend & Browser **APIs** Query Customer Cache

Performance mantras

- Don't do it build the minimal synchronization needed
- Do it, but don't do it again query caching
- Do it less only index what you need
- Do it later minimize upfront processing
- Do it when they're not looking pre-aggregate
- Do it concurrently use independent horizontally scalable data stores
- Do it cheaper use hybrid data storage types and technologies and leverage approximation

- Don't do it build the bare minimal synchronization needed
- Do it, but don't do it again cache as much as you can
- Do it less only index what you need
- Do it later minimize upfront processing
- Do it when they're not looking pre-aggregate where is cost effective
- Do it concurrently use independent horizontally scalable data stores
- Do it cheaper use hybrid data storage types and technologies and leverage approximation

Do exactly as much work as needed, and no more

Thank You

Rate today's session

Cyberconflict: A new era of war, sabotage, and fear

See passes & pricing

David Sanger (The New York Times)
9:55am-10:10am Wednesday, March 27, 2019
Location: Ballroom
Secondary topics: Security and Privacy

31 Add to Your Schedule
Add Comment or Question

Rate This Session

We're living in a new era of constant sabotage, misinformation, and fear, in which everyone is a target, and you're often the collateral damage in a growing conflict among states. From crippling infrastructure to sowing discord and doubt, cyber is now the weapon of choice for democracies, dictators, and terrorists.

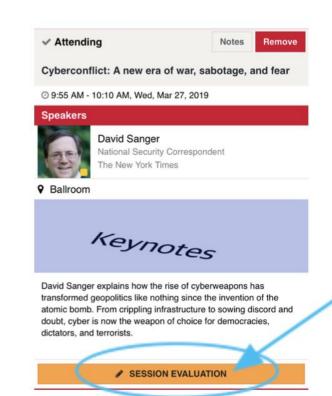
David Sanger explains how the rise of cyberweapons has transformed geopolitics like nothing since the invention of the atomic bomb. Moving from the White House Situation Room to the dens of Chinese, Russian, North Korean, and Iranian hackers to the boardrooms of Silicon Valley, David reveals a world coming face-to-face with the perils of technological revolution—a conflict that the United States helped start when it began using cyberweapons against Iranian nuclear plants and North Korean missile launches. But now we find ourselves in a conflict we're uncertain how to control, as our adversaries exploit vulnerabilities in our hyperconnected nation and we struggle to figure out how to deter these complex, short-of-war attacks.

David Sanger

The New York Times

David E. Sanger is the national security correspondent for the New York Times as well as a national security and political contributor for CNN and a frequent guest on CBS This Morning, Face the Nation, and many PBS shows.

Session page on conference website



O'Reilly Events App