
Datadog: A Real-Time Metrics
Database for Trillions of
Points/Day

Joel BARCIAUSKAS (https://twitter.com/JoelBarciauskas)
Director, Aggregation Metrics

SACON '20

Trillions of points per day

2

104 Number of apps; 1,000’s hosts times 10’s containers

103 Number of metrics emitted from each app/container

100 1 point a second per metric

105 Seconds in a day (actually 86,400)

104 x 103 x 105 = 1012

Decreasing Infrastructure Lifecycle

4

Months/years Seconds

Datacenter Cloud/VM Containers

Increasing Granularity

5
100’s

10,000’s

System

Application

Per User Device

SLIs

Tackling performance challenges

• Don't do it
• Do it, but don't do it again
• Do it less
• Do it later
• Do it when they're not looking
• Do it concurrently
• Do it cheaper

*From Craig Hanson and Pat Crain, and the performance engineering
community - see http://www.brendangregg.com/methodology.html

6

http://www.brendangregg.com/methodology.html

Talk Plan

1. Our Architecture
2. Deep Dive On Our Datastores
3. Handling Synchronization
4. Approximation For Deeper Insights
5. Enabling Flexible Architecture

7

Talk Plan

1. Our Architecture
2. Deep Dive On Our Datastores
3. Handling Synchronization
4. Approximation For Deeper Insights
5. Enabling Flexible Architecture

8

Example Metrics Query 1

“What is the system load on instance i-xyz across the last 30 minutes”

9

A Time Series

metric system.load.1

timestamp 1526382440

value 0.92

tags host:i-xyz,env:dev,...

10

Tags for all the dimensions

Host / container: system metrics by host

Application: internal cache hit rates, timers by module

Service: hits, latencies or errors/s by path and/or response code

Business: # of orders processed, $'s per second by customer ID

11

Pipeline Architecture

12

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Caching timeseries data

13

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Performance mantras

• Don't do it
• Do it, but don't do it again - cache as much as you can
• Do it less
• Do it later
• Do it when they're not looking
• Do it concurrently
• Do it cheaper

14

Zooming in

15

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Kafka for Independent Storage Systems

IntakeIncoming
Data

Kafka Points

Store 1

Store 2

Kafka
Tag Sets

Tag Index

Tag
Describer S3

S3 Writer Query
System

Outgoing
Data

Performance mantras

• Don't do it
• Do it, but don't do it again - cache as much as you can
• Do it less
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently
• Do it cheaper

17

Scaling through Kafka
Partition by customer, metric, tag set

● Isolate by customer
● Scale concurrently by metric
● Building something more dynamic

Intake
Kafka partition:1Incoming

Data Kafka partition:2

Kafka partition:0

Store
1

Kafka partition:3

Store
2

Store
2

Store
2

Store
1

Performance mantras

• Don't do it
• Do it, but don't do it again - cache as much as you can
• Do it less
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently - spread data across independent, scalable data

stores
• Do it cheaper

19

Talk Plan

1. Our Architecture
2. Deep Dive On Our Datastores
3. Handling Synchronization
4. Approximation For Deeper Insights
5. Enabling Flexible Architecture

20

Trillions of points per day

21

104 Number of apps; 1,000’s hosts times 10’s containers

103 Number of metrics emitted from each app/container

100 1 point a second per metric

105 Seconds in a day (actually 86,400)

104 x 103 x 105 = 1012

Per Customer Volume Ballparking

22

104 Number of apps; 1,000’s hosts times 10’s containers

103 Number of metrics emitted from each app/container

100 1 point a second per metric

105 Seconds in a day (actually 86,400)

101 Bytes/point (8 byte float, amortized tags)

= 1013 10 Terabytes a Day For One Customer

Cloud Storage Characteristics

23

Type Max Capacity Bandwidth Latency Cost/TB for 1 month Volatility

DRAM1 4 TB 80 GB/s 0.08 us $1,000 Instance Reboot

SSD2 60 TB 12 GB/s 1 us $60 Instance Failures

EBS io1 432 TB 12 GB/s 40 us $400 Data Center Failures

S3 Infinite 12 GB/s3 100+ ms $214 11 nines durability

Glacier Infinite 12 GB/s3 hours $44 11 nines durability

1. X1e.32xlarge, 3 year non convertible, no upfront reserved instance
2. i3en.24xlarge, 3 year non convertible, no upfront reserved instance
3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
4. Storage Cost only

Volume Math

• 80 x1e.32xlarge DRAM
• $300,000 to store for a month
• This is with no indexes or overhead
• And people want to query much more than a month.

24

Cloud Storage Characteristics

25

Type Max Capacity Bandwidth Latency Cost/TB for 1 month Volatility

DRAM1 4 TB 80 GB/s 0.08 us $1,000 Instance Reboot

SSD2 60 TB 12 GB/s 1 us $60 Instance Failures

EBS io1 432 TB 12 GB/s 40 us $400 Data Center Failures

S3 Infinite 12 GB/s3 100+ ms $214 11 nines durability

Glacier Infinite 12 GB/s3 hours $44 11 nines durability

1. X1e.32xlarge, 3 year non convertible, no upfront reserved instance
2. i3en.24xlarge, 3 year non convertible, no upfront reserved instance
3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
4. Storage Cost only

Cloud Storage Characteristics

26

Type Max Capacity Bandwidth Latency Cost/TB for 1 month Volatility

DRAM1 4 TB 80 GB/s 0.08 us $1,000 Instance Reboot

SSD2 60 TB 12 GB/s 1 us $60 Instance Failures

EBS io1 432 TB 12 GB/s 40 us $400 Data Center Failures

S3 Infinite 12 GB/s3 100+ ms $214 11 nines durability

Glacier Infinite 12 GB/s3 hours $44 11 nines durability

1. X1e.32xlarge, 3 year non convertible, no upfront reserved instance
2. i3en.24xlarge, 3 year non convertible, no upfront reserved instance
3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
4. Storage Cost only

Queries We Need to Support

27

DESCRIBE TAGS What tags are queryable for this metric?

TAG INDEX Given a time series id, what tags were used?

TAG INVERTED
INDEX

Given some tags and a time range, what were
the time series ingested?

POINT STORE What are the values of a time series between
two times?

Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper

28

Hybrid Data Storage

29

System

DESCRIBE TAGS

TAG INDEX

TAG INVERTED INDEX

POINT STORE

QUERY RESULTS

Hybrid Data Storage

30

System Type Persistence

DESCRIBE TAGS Local SSD Years

TAG INDEX DRAM Cache (Hours)

Local SSD Years

TAG INVERTED INDEX DRAM Hours

On SSD Days

S3 Years

POINT STORE DRAM Hours

Local SSD Days

S3 Years

QUERY RESULTS DRAM Cache (Days)

Hybrid Data Storage

31

System Type Persistence Technology Why?

DESCRIBE TAGS Local SSD Years LevelDB High performing single node k,v

TAG INDEX DRAM Cache (Hours) Redis Very high performance, in memory k,v

Local SSD Years Cassandra Horizontal scaling, persistent k,v

TAG INVERTED INDEX DRAM Hours In house Very customized index data structures

On SSD Days RocksDB + SQLite Rich and flexible queries

S3 Years Parquet Flexible Schema over time

POINT STORE DRAM Hours In house Very customized index data structures

Local SSD Days In house Very customized index data structures

S3 Years Parquet Flexible Schema over time

QUERY RESULTS DRAM Cache (Days) Redis Very high performance, in memory k,v

Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - match data latency requirements to cost

32

Talk Plan

1. Our Architecture
2. Deep Dive On Our Datastores
3. Handling Synchronization
4. Approximation For Deeper Insights
5. Enabling Flexible Architecture

33

Alerts/Monitors Synchronization

• Required to prevent false positives
• Need all data for the evaluation time period is ready

34

Pipeline Architecture

35

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Inject
heartbeat here

Pipeline Architecture

36

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Inject
heartbeat here

And test it gets to
here

Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - match data latency requirements to cost

37

Talk Plan

1. Our Architecture
2. Deep Dive On Our Datastores
3. Handling Synchronization
4. Approximation For Deeper Insights
5. Enabling Flexible Architecture

38

Types of metrics

39

Counter, aggregate by sum Gauges, aggregate by last or avg

Ex: Requests, errors/s, total
time spent (stopwatch)

Ex: CPU/network/disk use,
queue length

Aggregation for counters and gauges

40

{0, 1, 0, 1, 0, 1, 0, 1, 0, 1}

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

{5, 5, 5, 5, 5, 5, 5, 5, 5, 5}

{0, 2, 4, 8, 16, 32, 64, 128, 256, 512}

Time

S
p
ac
e

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Query output

Counters: {5, 40, 50, 1023}

Gauges (average): {0.5, 4, 5, 102.3}

Gauges (last): {1, 9, 5, 512}

Focus on outputs

41

These graphs are both aggregating 70k series

Output 20 to 2000 times less series than input

Pipeline Architecture

42

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Aggregation
Points

Pipeline Architecture

43

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Aggregation
Points

Streaming
Aggregator

Pipeline Architecture

44

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Aggregation
Points

No one's looking here!

Streaming
Aggregator

Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking - pre-aggregate
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies

45

Distributions

46

Aggregate by percentile or SLO
(count of values above or below a threshold)

Ex: Latency, request size

Calculating distributions

47

{0, 1, 0, 1, 0, 1, 0, 1, 0, 1}

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

{5, 5, 5, 5, 5, 5, 5, 5, 5, 5}

{0, 2, 4, 8, 16, 32, 64, 128, 256, 512}

Time

S
p
ac
e

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

{0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 1, 2, 2, 3, 4, 4, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 8,
8, 9, 16, 32, 64, 128, 256,
512}

p90

p50

Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper again?

48

Tradeoffs

Engineering triangle - fast, good or cheap

What's the universe of valid values? (inputs)

What are common queries? (outputs)

49

Sketches

50

Data structures designed for operating on streams of data

• Examine each item a limited number of times (ideally once)
• Limited memory usage (logarithmic to the size of the stream,

or fixed)

Max size

You may know these sketches

HyperLogLog

• Cardinality / unique count estimation
• Used in Redis PFADD, PFCOUNT, PFMERGE

Others: Bloom filters (also for set membership), frequency
sketches (top-N lists)

51

Approximation for distribution metrics

What's important for approximating distribution metrics?

• Good: accurate
• Fast: quick insertion & queries
• Cheap: bounded-size storage

52

Approximating a distribution

53

Bucketed histograms

Basic example from OpenMetrics / Prometheus

54

Bucketed histograms

Basic example from OpenMetrics / Prometheus

55

Time spent Count

<= 0.05 (50ms) 24054

<= 0.1 (100ms) 33444

<= 0.2 (200ms) 100392

<= 0.5 (500ms) 129389

<= 1s 133988

> 1s 144320

median = ~158ms (using linear interpolation)

72160

158ms

p99 = ?!

Bucketed histograms

Basic example from OpenMetrics / Prometheus

56

Time spent Count

<= 0.05 (50ms) 24054

<= 0.1 (100ms) 33444

<= 0.2 (200ms) 100392

<= 0.5 (500ms) 129389

<= 1s 133988

> 1s 144320

median = ~158ms (using linear interpolation)

p50

158ms

p99

Rank and relative error

57

Rank and relative error

58

Good: relative error

Relative error bounds mean we can answer this: Yes, within 99%
of requests are <= 500ms +/- 1%

Otherwise stated: 99% of requests are guaranteed <= 505ms

59

Cheap: fixed storage size

With certain distributions, we may reach the maximum number
of buckets (in our case, 4000)

• Roll up lower buckets - lower percentiles are generally not as
interesting!*

*Note that we've yet to find a data set that actually needs this in practice
60

Fast: insertion & query

Each insertion is just two operations - find the bucket, increase
the count (sometimes there's an allocation)

Queries look at the fixed number of buckets

61

DDSketch

DDSketch (Distributed Distribution Sketch) is open source

• Presented at VLDB2019 in August
• Open-source versions in several languages

Python: github.com/DataDog/sketches-py

Java: github.com/DataDog/sketches-java

Go: github.com/DataDog/sketches-go

62

https://github.com/DataDog/sketches-py
https://github.com/DataDog/sketches-java
https://github.com/DataDog/sketches-go

Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - leverage approximation

63

Talk Plan

1. Our Architecture
2. Deep Dive On Our Datastores
3. Handling Synchronization
4. Approximation For Deeper Insights
5. Enabling Flexible Architecture

64

Commutativity

65

"a binary operation is commutative if changing the order of the
operands does not change the result"

Why is this important?

Commutativity

66

"a binary operation is commutative if changing the order of the
operands does not change the result"

Why is this important?

Distribute aggregation work throughout the pipeline

Pipeline Architecture

67

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Aggregation
Points

Streaming
Aggregator

Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking - pre-aggregate
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies and

leverage approximation

68

Do exactly as much work as needed,
and no more

• Don't do it - build the bare minimal synchronization needed
• Do it, but don't do it again - cache as much as you can
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking - pre-aggregate where is cost effective
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies and

leverage approximation

69

Thank You

71

