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Trillions of points per day

10* Number of apps; 1,000’s hosts times 10’s containers
10° Number of metrics emitted from each app/container
10° 1 point a second per metric

10° Seconds in a day (actually 86,400)

10* x 103 x 10° = 10"



P ShOplSt Timeboard v  editwidgets + 1h The Past Hour v m

DATADOG v Service Level Agreements ~

Shop.ist Homepage Uptime S o Shop.ist Checkout Latency &S » Shop.ist Uptime - This Week VR - Shop.ist Checkout Availability S B

Previous week

Past 7 Days 9977% Past 30 Days

Past 30 Days

99.69%

&  Dashboards 94% (1d 9h 49m) budget 99% (1d 11h 27m) bud 88.8340%
aws:ap-northeast-1 99.99% .
T TTN T T T T T I 11T g e e e -12% (-108K reqs) budger
T T T T T | T T T T T T T 1
Nov 24 Dec Dec8 Dec 15 aws:eu-west-2 100.00% dec8 Mon 9 Tue 10 Wed 11 Thu 12 Fri13 Sat 14 Dec 1

v Business KPIs d &
Count of Checkouts Completed 7 Avg Time To Checkout PR Items added / removed from carts -
&0 1.5K
£l
W{WMM\WWMWLWNWM 1K
40
20 0.5
0.2
io 2 0K
o LT T e
0.5¢
0 [V o T T
17:00 17:15 17:30 17:45 17:00 17:15 17:30 17:45 17:00 17:15 17:30 17:45 17:00 17:15 17:30 17:45

v RUM - Frontend Metrics dy &

Page views R -] e end median, p75 and p90 -] Top URLs ¢ %  Top countries &S B
B @VIEW.URL DETAILS.PA COUNT MEDIAN:LOAD EVENT @NETWORK.CLIENT.GEC COUNT MEDIAN:LOAD EVENT

200 > / 1.18K 11.09s  United States 1.49K 922.88ms

1 Jcart 855 1129.27ms United Kingdom 622 B865.86ms

i [II II lIl | 05 i /department/sofas 747 1246.72ms Singapore 609 1512.3ms
I I ll llll ||I| “II ll“ I I“l Illl I l II“ Ill o LARALAAMBASMASAASAA ARA MSASWASA AR | /department/sofas/produ (i Wz26ms|  |loeiand 586 1027:05ms
bR L 120 i) e ) s e Jcheckout 542 N/A  South Korea 500 1494.6ms

v Performance d
p95 latency per Merchant PR Avg of @duration @merchant.store_name over "env... ¢ &% Trace duration by AZ 7 »

1.58 Knight-Bryant
1.06 Moore-Bernard
2 1.00 Washington and Sons 6
1.00 Lawrence PLC
| 4 091 Brown, Moreno and Gould
; 0.70 Hawkins PLC
0.57 Miller, Henderson and Johnson
0.53 Shaffer PLC 5
0.50 Calderon-Montgomery

043 Dudley-Gray A . N
N4 Deauls DIe 0 *

Q Search. Saved Views v $Role * - Senv staging v Saz * v G 23 O W«



Decreasing Infrastructure Lifecycle

Datacenter Cloud/VM Containers

Months/years Seconds



Increasing Granularity

Test duration by location & device

g s ' ~ Per User Device
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Tackling performance challenges

e Don'tdoit

e Do it, but don't do it again

e Doitless

e Do it later

e Do it when they're not looking
e Do it concurrently

e Do it cheaper

*From Craig Hanson and Pat Crain, and the performance engineering
community - see http://www.brendangreqg.com/methodology.html

A .
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Handling Synchronization
Approximation For Deeper Insights
Enabling Flexible Architecture
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Example Metrics Query 1

“What is the system load on instance i-xyz across the last 30 minutes”



A Time Series

Avg of system.load.1
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Tags for all the dimensions

Application: internal cache hit rates, timers by module

Host / container: system metrics by host

Service: hits, latencies or errors/s by path and/or response code

Business: # of orders processed, $'s per second by customer ID

A .
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Caching timeseries data
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Performance mantras

e Don'tdoit

e Do it, but don't do it again - cache as much as you can
e Doitless

e Do it later

e Do it when they're not looking

e Do it concurrently

e Do it cheaper
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Kafka for Independent Storage Systems
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Performance mantras

e Don'tdoit

e Do it, but don't do it again - cache as much as you can
e Doitless

e Do it later - minimize upfront processing

e Do it when they're not looking

e Do it concurrently

e Do it cheaper



Scaling through Kafka

Partition by customer, metric, tag set

e Isolate by customer
e Scale concurrently by metric
e Building something more dynamic

Kafka partition:0

Incoming Kafka partition:1

Intake
Data ‘ Kafka partition:2 .
K

afka partition:3




Performance mantras

e Don'tdo it

e Do it, but don't do it again - cache as much as you can

e Doitless

e Do it later - minimize upfront processing

e Do it when they're not looking

e Do it concurrently - spread data across independent, scalable data
stores

e Do it cheaper



Talk Plan

1. Our Architecture

2. Deep Dive On Our Datastores

3. Handling Synchronization

4. Approximation For Deeper Insights
5. Enabling Flexible Architecture



Trillions of points per day

10* Number of apps; 1,000’s hosts times 10’s containers
10° Number of metrics emitted from each app/container
10° 1 point a second per metric

10° Seconds in a day (actually 86,400)

10* x 103 x 10° = 10"



Per Customer Volume Ballparking

10
10°
10°
10°
10

— 1013

Number of apps; 1,000’s hosts times 10’s containers
Number of metrics emitted from each app/container
1 point a second per metric

Seconds in a day (actually 86,400)

Bytes/point (8 byte float, amortized tags)

10 Terabytes a Day For One Customer



Cloud Storage Characteristics

Type
DRAM'
SSD?
EBS io1
S3

Glacier

prON~

Max Capacity
4TB

60 TB

432 TB

Infinite

Infinite

Bandwidth
80 GB/s
12 GB/s
12 GB/s
12 GB/s®

12 GB/s?®

Latency
0.08 us
1us

40 us
100+ ms

hours

X1e.32xlarge, 3 year non convertible, no upfront reserved instance
i3en.24xlarge, 3 year non convertible, no upfront reserved instance
Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
Storage Cost only

Cost/TB for 1 month
$1,000

$60

$400

$214

$4¢

Volatility

Instance Reboot
Instance Failures
Data Center Failures
11 nines durability

11 nines durability



Volume Math

80 x1e.32xlarge DRAM

$300,000 to store for a month

This i1s with no indexes or overhead

And people want to query much more than a month.
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Cloud Storage Characteristics

Type
DRAM'
SSD?
EBS io1
S3

Glacier

prON~

Max Capacity
4TB

60 TB

432 TB

Infinite

Infinite

Bandwidth | Latency Cost/TB for 1 month
80 GB/s 0.08 us $1,000

12 GB/s 1 us $60

12 GB/s 40 us $400

12 GB/s® 100+ ms $214

12 GB/s® hours $44

X1e.32xlarge, 3 year non convertible, no upfront reserved instance
i3en.24xlarge, 3 year non convertible, no upfront reserved instance
Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
Storage Cost only

Volatility

Instance Reboot
Instance Failures
Data Center Failures
11 nines durability

11 nines durability



Queries We Need to Support

DESCRIBE TAGS What tags are queryable for this metric?
TAG INDEX Given a time series id, what tags were used?

TAG INVERTED Given some tags and a time range, what were
INDEX the time series ingested?

POINT STORE What are the values of a time series between
two times?

A -



Performance mantras

e Don'tdo it

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize upfront processing

e Do it when they're not looking

e Do it concurrently - use independent horizontally scalable data stores
e Do it cheaper



Hybrid Data Storage

System
DESCRIBE TAGS

TAG INDEX

TAG INVERTED INDEX

POINT STORE

QUERY RESULTS



Hybrid Data Storage

System
DESCRIBE TAGS

TAG INDEX

TAG INVERTED INDEX

POINT STORE

QUERY RESULTS

Type
Local SSD
DRAM
Local SSD
DRAM

On SSD
S3

DRAM
Local SSD
S3

DRAM

Persistence
Years

Cache (Hours)
Years

Hours

Days

Years

Hours

Days

Years

Cache (Days)



Hybrid Data Storage

System Type Persistence Technology Why?

DESCRIBE TAGS Local SSD Years LevelDB High performing single node k,v

TAG INDEX DRAM Cache (Hours) | Redis Very high performance, in memory k,v
Local SSD Years Cassandra Horizontal scaling, persistent k,v

TAG INVERTED INDEX DRAM Hours In house Very customized index data structures
On SSD Days RocksDB + SQLite Rich and flexible queries
S3 Years Parquet Flexible Schema over time

POINT STORE DRAM Hours In house Very customized index data structures
Local SSD Days In house Very customized index data structures
S3 Years Parquet Flexible Schema over time

QUERY RESULTS DRAM Cache (Days) Redis Very high performance, in memory k,v

A .



Performance mantras

e Don'tdo it

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize upfront processing

e Do it when they're not looking

e Do it concurrently - use independent horizontally scalable data stores
e Do it cheaper - match data latency requirements to cost



Talk Plan
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Our Architecture

Deep Dive On Our Datastores
Handling Synchronization
Approximation For Deeper Insights
Enabling Flexible Architecture



Alerts/Monitors Synchronization

e Required to prevent false positives
* Need all data for the evaluation time period is ready
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Performance mantras

e Don't do it - build the minimal synchronization needed

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize upfront processing

e Do it when they're not looking

e Do it concurrently - use independent horizontally scalable data stores
e Do it cheaper - match data latency requirements to cost
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Types of metrics

Counter, aggregate by sum Gauges, aggregate by last or avg

Ex: Requests, errors/s, total Ex: CPU/network/disk use,
time spent (stopwatch) queue length @ o



Aggregation for counters and gauges

{0,1,0,1,0,1,0, 1,0, 1}
{0,1,2,3,4,5,6,7,8, 9}
(5,5,5,5,5,5,5,5, 5, 5)

{0, 2, 4, 8, 16, 32, 64, 128, 256, 512}

A~ O

Time >

Query output
Counters: {5, 40, 50, 1023}
Gauges (average): {0.5, 4, 5, 102.3}

Gauges (last): {1, 9, 5, 512}

40



Focus on outputs

40K
30k T
20K

10K

18:15 18:30 18:45 19:00

Showing | 3254 | series from | 1 | queries. Showing | 33 |series from| 1 | queries.

These graphs are both aggregating 70k series
Output 20 to 2000 times less series than input
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Pipeline Architecture

No one's looking here!
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Performance mantras

e Don't do it - build the minimal synchronization needed

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize processing on path to persistence

e Do it when they're not looking - pre-aggregate

e Do it concurrently - use independent horizontally scalable data stores
e Do it cheaper - use hybrid data storage types and technologies



Distributions

p50 p75 p90 p95

10.0k

5.0k

p99

T
0ns 2.00s 4.00s 6.00 s

Aggregate by percentile or SLO
(count of values above or below a threshold)

Ex: Latency, request size

|
8.00s



Calculating distributions

{0,1,0,1,0,1,0,1,0, 1}

{05 152! 3! 45 55 65 7, 8, 9} 15 1! 1!2! 25 35 4, 4, 5, 5, 5,
5,55,5,/5,5,5,5,6,7,8,
(5,5,5,5,5,5,5, 5, 5, 5} 8,9, 16,132, 64, 128, 256,
512} \
{0, 2, 4, 8, 16, 32, 64, 128, 256, 512} o0
p

A~ O
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Performance mantras

e Don't do it - build the minimal synchronization needed

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize upfront processing

e Do it when they're not looking

e Do it concurrently - use independent horizontally scalable data stores
e Do it cheaper again?



Tradeoffs

Engineering triangle - fast, good or cheap

What's the universe of valid values? (inputs) Fast

A .

What are common queries? (outputs)



Sketches

Data structures designed for operating on streams of data

e Examine each item a limited number of times (ideally once)
e Limited memory usage (logarithmic to the size of the stream,
or fixed) -




You may know these sketches

HyperLoglog

e (Cardinality / unigue count estimation
e Used in Redis PFADD, PFCOUNT, PFMERGE

Others: Bloom filters (also for set membership), frequency
sketches (top-N lists)



Approximation for distribution metrics

What's important for approximating distribution metrics?

e (Good: accurate
e [ast: quick insertion & queries
e Cheap: bounded-size storage Fast

A =




Approximating a distribution

{ e

7
+
/




Bucketed histograms

Basic example from OpenMetrics / Prometheus

# HELP http_request_duration_seconds A histogram of the request duration.
# TYPE http_request_duration_seconds histogram
http_request_duration_seconds_bucket{le="0.05"} 24054
http_request_duration_seconds_bucket{le="0.1"} 33444
http_request_duration_seconds_bucket{le="0.2"} 100392
http_request_duration_seconds_bucket{le="0.5"} 129389
http_request_duration_seconds_bucket{le="1"} 133988
http_request_duration_seconds_bucket{le="+Inf"} 144320
http_request_duration_seconds_sum 53423
http_request_duration_seconds_count 144320

%54



Bucketed histograms

Basic example from OpenMetrics / Prometheus

Time spent

<= 0.05 (50ms)
<= 0.1 (100ms)
<= 0.2 (200ms)
<= 0.5 (500ms)

<=1s

Count
24054
33444
100392
129389
133988

144320

median = ~168ms (using linear interpolation)

100000

72160

50000

0.1

553”1503

0.4

0.5

0.6

0.7

0.8

0.9



Bucketed histograms

Basic example from OpenMetrics / Prometheus

median = ~168ms (using linear interpolation)
Time spent Count

<=0.05 (50ms) | 24054
<= 0.1 (100ms) 33444 200000

<= 0.2 (200ms) 100392
150000

<= 0.5 (500ms) | 129389 p99
<=1s 133988 100000
> 1s 144320 p50

50000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
158ms



Rank and relative error
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Good: relative error '

Cheap

Relative error bounds mean we can answer this: Yes, within 99%
of requests are <= 500ms +/- 1%

Otherwise stated: 99% of requests are guaranteed <= 505ms



Cheap: fixed storage size '

Cheap

With certain distributions, we may reach the maximum number
of buckets (in our case, 4000)

¢ Roll up lower buckets - lower percentiles are generally not as
interesting!”

*Note that we've yet to find a data set that actually needs this in practice a
60



Fast: insertion & query '

Cheap

Each insertion is just two operations - find the bucket, increase
the count (sometimes there's an allocation)

Queries look at the fixed number of buckets



DDSketch

DDSketch (Distributed Distribution Sketch) is open source

* Presented at VLDB2019 in August
e (QOpen-source versions in several languages

Python: github.com/DataDog/sketches-py

Java: qgithub.com/DataDoqg/sketches-java

Go: github.com/DataDoa/sketches-go



https://github.com/DataDog/sketches-py
https://github.com/DataDog/sketches-java
https://github.com/DataDog/sketches-go

Performance mantras

e Don't do it - build the minimal synchronization needed

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize upfront processing

e Do it when they're not looking

e Do it concurrently - use independent horizontally scalable data stores
e Do it cheaper - leverage approximation
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Commutativity

"a binary operation is commutative if changing the order of the
operands does not change the result”

Why is this important?



Commutativity

"a binary operation is commutative if changing the order of the
operands does not change the result”

Why is this important?

Distribute aggregation work throughout the pipeline
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Performance mantras

e Don't do it - build the minimal synchronization needed

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize upfront processing

e Do it when they're not looking - pre-aggregate

e Do it concurrently - use independent horizontally scalable data stores

e Do it cheaper - use hybrid data storage types and technologies and
leverage approximation



e Don't do it - build the bare minimal synchronization needed

e Do it, but don't do it again - cache as much as you can

e Do itless - only index what you need

e Do it later - minimize upfront processing

e Do it when they're not looking - pre-aggregate where is cost effective

e Do it concurrently - use independent horizontally scalable data stores

e Do it cheaper - use hybrid data storage types and technologies and
leverage approximation

Do exactly as much work as needed,

and no more -



Thank You
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Speakers

. David Sanger
‘ National Security Correspondent

g in a new era of constant sabotage, misinformation, and fear, in which everyone is a target, and you're often the The New York Times

collateral damage in a growing conflict among states. From crippling infrastructure to sowing discord and doubt, cyber is now 9 Ball
the weapon of choice for democracies, dictators, and terrorists.

David Sanger explains how the rise of cyberweapons has transformed geopolitics like nothing since the invention of the atomic
bomb. Moving from the White House Situation Room to the dens of Chinese, Russian, North Korean, and Iranian hackers to the
boardrooms of Silicon Valley, David reveals a world coming face-to-face with the perils of technological revolution—a conflict

that the United States helped start when it began using cyberweapons against Iranian nuclear plants and North Korean missile

launches. But now we find ourselves in a conflict we're uncertain how to control, as our adversaries exploit vulnerabilities in
our hyperconnected nation and we struggle to figure out how to deter these complex, short-of-war attacks.

David Sanger explains how the rise of cyberweapons has
transformed geopolitics like nothing since the invention of the

atomic bomb. From crippling infrastructure to sowing discord and
David Sanger doubt, cyber is now the weapon of choice for democracies,

The New York Times b -

:

David E. Sanger is the national security correspondent for the New York Times as well as a national security and /
political contributor for CNN and a frequent guest on CBS This Morning, Face the Nation, and many PBS shows.

Session page on conference website O’'Reilly Events App



