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Trillions of points per day

2

104 Number of apps; 1,000’s hosts times 10’s containers

103 Number of metrics emitted from each app/container

100 1 point a second per metric

105 Seconds in a day (actually 86,400)

104  x 103 x 105 = 1012





Decreasing Infrastructure Lifecycle
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Increasing Granularity
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Tackling performance challenges

• Don't do it
• Do it, but don't do it again
• Do it less
• Do it later
• Do it when they're not looking
• Do it concurrently
• Do it cheaper

*From Craig Hanson and Pat Crain, and the performance engineering 
community  - see http://www.brendangregg.com/methodology.html 
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http://www.brendangregg.com/methodology.html


Talk Plan

1. Our Architecture
2. Deep Dive On Our Datastores
3. Handling Synchronization
4. Approximation For Deeper Insights
5. Enabling Flexible Architecture
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Example Metrics Query 1

“What is the system load on instance i-xyz across the last 30 minutes”
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A Time Series

metric system.load.1

timestamp 1526382440

value 0.92

tags host:i-xyz,env:dev,...
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Tags for all the dimensions

Host / container: system metrics by host

Application: internal cache hit rates, timers by module

Service: hits, latencies or errors/s by path and/or response code

Business: # of orders processed, $'s per second by customer ID
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Pipeline Architecture
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Caching timeseries data
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Performance mantras

• Don't do it
• Do it, but don't do it again - cache as much as you can
• Do it less
• Do it later
• Do it when they're not looking
• Do it concurrently
• Do it cheaper

14



Zooming in
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Kafka for Independent Storage Systems 
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Performance mantras

• Don't do it
• Do it, but don't do it again - cache as much as you can
• Do it less
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently
• Do it cheaper
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Scaling through Kafka 
Partition by customer, metric, tag set

● Isolate by customer
● Scale concurrently by metric
● Building something more dynamic 

Intake
Kafka partition:1Incoming
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2

Store 
2

Store 
2
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Performance mantras

• Don't do it
• Do it, but don't do it again - cache as much as you can
• Do it less
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently - spread data across independent, scalable data 

stores
• Do it cheaper
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Talk Plan

1. Our Architecture
2. Deep Dive On Our Datastores
3. Handling Synchronization
4. Approximation For Deeper Insights
5. Enabling Flexible Architecture
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Trillions of points per day
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104 Number of apps; 1,000’s hosts times 10’s containers

103 Number of metrics emitted from each app/container

100 1 point a second per metric

105 Seconds in a day (actually 86,400)

104  x 103 x 105 = 1012



Per Customer Volume Ballparking 
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104 Number of apps; 1,000’s hosts times 10’s containers

103 Number of metrics emitted from each app/container

100 1 point a second per metric

105 Seconds in a day (actually 86,400)

101 Bytes/point (8 byte float, amortized tags)

= 1013 10 Terabytes a Day For One Customer



Cloud Storage Characteristics
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Type Max Capacity Bandwidth Latency Cost/TB for 1 month Volatility

DRAM1 4 TB 80 GB/s 0.08 us $1,000 Instance Reboot

SSD2 60 TB 12 GB/s 1 us $60 Instance Failures

EBS io1 432 TB 12 GB/s 40 us $400 Data Center Failures

S3 Infinite 12 GB/s3 100+ ms $214 11 nines durability

Glacier Infinite 12 GB/s3 hours $44 11 nines durability

1. X1e.32xlarge, 3 year non convertible, no upfront reserved instance
2. i3en.24xlarge, 3 year non convertible, no upfront reserved instance
3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
4. Storage Cost only



Volume Math

• 80 x1e.32xlarge DRAM 
• $300,000 to store for a month
• This is with no indexes or overhead 
• And people want to query much more than a month.

24



Cloud Storage Characteristics

25

Type Max Capacity Bandwidth Latency Cost/TB for 1 month Volatility

DRAM1 4 TB 80 GB/s 0.08 us $1,000 Instance Reboot

SSD2 60 TB 12 GB/s 1 us $60 Instance Failures

EBS io1 432 TB 12 GB/s 40 us $400 Data Center Failures

S3 Infinite 12 GB/s3 100+ ms $214 11 nines durability

Glacier Infinite 12 GB/s3 hours $44 11 nines durability

1. X1e.32xlarge, 3 year non convertible, no upfront reserved instance
2. i3en.24xlarge, 3 year non convertible, no upfront reserved instance
3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
4. Storage Cost only
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Type Max Capacity Bandwidth Latency Cost/TB for 1 month Volatility

DRAM1 4 TB 80 GB/s 0.08 us $1,000 Instance Reboot

SSD2 60 TB 12 GB/s 1 us $60 Instance Failures

EBS io1 432 TB 12 GB/s 40 us $400 Data Center Failures
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Glacier Infinite 12 GB/s3 hours $44 11 nines durability
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3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
4. Storage Cost only



Queries We Need to Support
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DESCRIBE TAGS What tags are queryable for this metric?

TAG INDEX Given a time series id, what tags were used?

TAG INVERTED 
INDEX

Given some tags and a time range, what were 
the time series ingested?

POINT STORE What are the values of a time series between 
two times?



Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper
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Hybrid  Data Storage 
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System

DESCRIBE TAGS

TAG INDEX
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Hybrid  Data Storage 
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System Type Persistence

DESCRIBE TAGS Local SSD Years

TAG INDEX DRAM Cache (Hours)

Local SSD Years

TAG INVERTED INDEX DRAM Hours

On SSD Days

S3 Years

POINT STORE DRAM Hours

Local SSD Days

S3 Years

QUERY RESULTS DRAM Cache (Days)



Hybrid  Data Storage 
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System Type Persistence Technology Why?

DESCRIBE TAGS Local SSD Years LevelDB High performing single node k,v

TAG INDEX DRAM Cache (Hours) Redis Very high performance, in memory k,v

Local SSD Years Cassandra Horizontal scaling, persistent k,v

TAG INVERTED INDEX DRAM Hours In house Very customized index data structures

On SSD Days RocksDB + SQLite Rich and flexible queries

S3 Years Parquet Flexible Schema over time

POINT STORE DRAM Hours In house Very customized index data structures

Local SSD Days In house Very customized index data structures

S3 Years Parquet Flexible Schema over time

QUERY RESULTS DRAM Cache (Days) Redis Very high performance, in memory k,v



Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - match data latency requirements to cost
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Talk Plan

1. Our Architecture
2. Deep Dive On Our Datastores
3. Handling Synchronization
4. Approximation For Deeper Insights
5. Enabling Flexible Architecture
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Alerts/Monitors Synchronization

• Required to prevent false positives
• Need all data for the evaluation time period is ready
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Pipeline Architecture
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Pipeline Architecture
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Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores 
• Do it cheaper - match data latency requirements to cost
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2. Deep Dive On Our Datastores
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4. Approximation For Deeper Insights
5. Enabling Flexible Architecture
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Types of metrics
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Counter, aggregate by sum Gauges, aggregate by last or avg

Ex: Requests, errors/s, total 
time spent (stopwatch)

Ex: CPU/network/disk use, 
queue length 



Aggregation for counters and gauges
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{0, 1, 0, 1, 0, 1, 0, 1, 0, 1}

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

{5, 5, 5, 5, 5, 5, 5, 5, 5, 5}

{0, 2, 4, 8, 16, 32, 64, 128, 256, 512}

Time

S
p
ac
e

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Query output

Counters: {5, 40, 50, 1023}

Gauges (average): {0.5, 4, 5, 102.3}

Gauges (last): {1, 9, 5, 512}



Focus on outputs

41

These graphs are both aggregating 70k series

Output 20 to 2000 times less series than input



Pipeline Architecture
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Pipeline Architecture
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Pipeline Architecture
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Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking - pre-aggregate
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies

45



Distributions
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Aggregate by percentile or SLO 
(count of values above or below a threshold)

Ex: Latency, request size



Calculating distributions
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{0, 1, 0, 1, 0, 1, 0, 1, 0, 1}

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

{5, 5, 5, 5, 5, 5, 5, 5, 5, 5}

{0, 2, 4, 8, 16, 32, 64, 128, 256, 512}

Time
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

{0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 
1, 1, 1, 2, 2, 3, 4, 4, 5, 5, 5, 
5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 8, 
8, 9, 16, 32, 64, 128, 256, 
512}

p90

p50



Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper again?

48



Tradeoffs

Engineering triangle - fast, good or cheap 

What's the universe of valid values? (inputs)

What are common queries? (outputs)
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Sketches
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Data structures designed for operating on streams of data

• Examine each item a limited number of times (ideally once)
• Limited memory usage (logarithmic to the size of the stream, 

or fixed)

Max size



You may know these sketches

HyperLogLog

• Cardinality / unique count estimation
• Used in Redis PFADD, PFCOUNT, PFMERGE

Others: Bloom filters (also for set membership), frequency 
sketches (top-N lists)
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Approximation for distribution metrics

What's important for approximating distribution metrics?

• Good: accurate
• Fast: quick insertion & queries
• Cheap: bounded-size storage
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Approximating a distribution
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Bucketed histograms

Basic example from OpenMetrics / Prometheus
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Bucketed histograms

Basic example from OpenMetrics / Prometheus
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Time spent Count

<= 0.05 (50ms) 24054

<= 0.1 (100ms) 33444

<= 0.2 (200ms) 100392

<= 0.5 (500ms) 129389

<= 1s 133988

> 1s 144320

median = ~158ms (using linear interpolation)

72160

158ms

p99 = ?!



Bucketed histograms

Basic example from OpenMetrics / Prometheus

56

Time spent Count

<= 0.05 (50ms) 24054

<= 0.1 (100ms) 33444

<= 0.2 (200ms) 100392

<= 0.5 (500ms) 129389

<= 1s 133988

> 1s 144320

median = ~158ms (using linear interpolation)

p50

158ms

p99



Rank and relative error
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Rank and relative error
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Good: relative error

Relative error bounds mean we can answer this: Yes, within 99% 
of requests are <= 500ms +/- 1%

Otherwise stated: 99% of requests are guaranteed <= 505ms
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Cheap: fixed storage size

With certain distributions, we may reach the maximum number 
of buckets (in our case, 4000)

• Roll up lower buckets - lower percentiles are generally not as 
interesting!*

*Note that we've yet to find a data set that actually needs this in practice
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Fast: insertion & query

Each insertion is just two operations - find the bucket, increase 
the count (sometimes there's an allocation)

Queries look at the fixed number of buckets
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DDSketch

DDSketch (Distributed Distribution Sketch) is open source

• Presented at VLDB2019 in August
• Open-source versions in several languages

Python: github.com/DataDog/sketches-py

Java: github.com/DataDog/sketches-java

Go: github.com/DataDog/sketches-go
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Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - leverage approximation
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Commutativity
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"a binary operation is commutative if changing the order of the 
operands does not change the result"

Why is this important?



Commutativity
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"a binary operation is commutative if changing the order of the 
operands does not change the result"

Why is this important?

Distribute aggregation work throughout the pipeline



Pipeline Architecture
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Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking - pre-aggregate
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies and 

leverage approximation
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Do exactly as much work as needed, 
and no more

• Don't do it - build the bare minimal synchronization needed
• Do it, but don't do it again - cache as much as you can
• Do it less - only index what you need
• Do it later - minimize upfront processing
• Do it when they're not looking - pre-aggregate where is cost effective
• Do it concurrently - use independent horizontally scalable data stores 
• Do it cheaper - use hybrid data storage types and technologies and 

leverage approximation
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Thank You



71


