
Tech Debt
A Master Class

@r0ml

Outline

• What is “Technical Debt”?

• avoiding it

• implications of “microservices”

• implications of “refactoring”

What is “Technical Debt”?

Design-Build Delivers: The New Tappan Zee Bridge
You don’t have to be a New Yorker to appreciate the engineering,
design, construction and political marvel that is the new Tappan Zee
bridge. Dubbed the “$4 Billion Marvel” by The New York Times, the
impressive bridge project hosts its first drivers this weekend:
“The new bridge is a symphony of statistics. More than 1,000
cylindrical piles were planted into the Hudson riverbed to create
41 pillars to hold up each span. Some 330,000 cubic yards of
concrete were poured in construction, including some 6,000
precast concrete road deck panels. The main decks of both
spans are held up by 192 cables stretched among eight 419-foot
angled towers. The bridge will handle 140,000 cars a day.”

None of this could have happened without design-build.

http://www.designbuilddoneright.com/design-build-delivers-the-new-tappan-zee-bridge/

https://www.nytimes.com/2017/08/24/nyregion/tappan-zee-bridge-opening.html

Design-Build vs. Design-Bid-Build

• https://en.wikipedia.org/wiki/Design–build

• Until 1979, the AIA American Institute of Architects' code of ethics and
professional conduct prohibited their members from providing construction
services.

• In 1993, the Design-Build Institute of America (DBIA)[4] was formed.

• Design–build is sometimes compared to the "master builder" approach, one
of the oldest forms of construction procedure. Comparing design–build to the
traditional method of procurement, the authors of Design-build Contracting
Handbook noted that: “from a historical perspective the so-called traditional
approach is actually a very recent concept, only being in use
approximately 150 years. In contrast, the design–build concept—also
known as the "master builder" concept—has been reported as being in use
for over four millennia.”[2]

Mythical Man Month

To make a user-friendly system, the system must have
conceptual integrity, which can only be achieved by
separating architecture from implementation. A single chief
architect (or a small number of architects), acting on the
user's behalf, decides what goes in the system and what
stays out.

Lowering Software Development Costs

• Implementers may be hired only after the architecture of
the system has been completed (a step that may take
several months, during which time prematurely-hired
implementers may have nothing to do).

• Do not develop software. Buy it "off the shelf" instead.

https://en.wikipedia.org/wiki/
Software_architect

The software architect concept began to take hold when
object-oriented programming or OOP, was coming into more
widespread use (in the late 1990s and early years of the
21st century).[citation needed] OOP allowed ever-larger
and more complex applications to be built, which in turn
required increased high-level application and system
oversight.

this slide intentionally left blank

1992

"Shipping first-time code is like going into debt. A little debt
speeds development so long as it is paid back promptly with
a rewrite. Objects make the cost of this transaction
tolerable. The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts as
interest on that debt. Entire engineering organizations can
be brought to a stand-still under the debt load of an
unconsolidated implementation, object-oriented or
otherwise."

@wardcunningham Ward Cunningham

2003

The tricky thing about technical debt, of course, is that
unlike money it's impossible to measure effectively. The
interest payments hurt a team's productivity, but since we
CannotMeasureProductivity, we can't really see the true
effect of our technical debt.

@martinfowler Martin Fowler

Why does this metaphor fall short?

• “managers don’t care about technical debt interest
payments.”

• it should be about “risk”, not “debt”

@rstephensme Rachel Stephens

http://redmonk.com/rstephens/2017/08/08/technical-debt/

http://www.castsoftware.com

http://www.castsoftware.com

There is no such thing as technical Debt

• do you know when you got into debt?

• did you ask someone for a loan?

• do you know how much you owe?

• do you know what your payments are?

• who do you owe?

• is anybody threatening you for failure to pay back the loan?

@ralfw Ralf Westphal

http://geekswithblogs.net/theArchitectsNapkin/archive/2015/07/22/there-is-no-such-thing-as-technical-debt.aspx

We could summarize the metaphor as follows:

When taking short cuts and delivering code that is not
quite right for the programming task of the moment, a
development team incurs Technical Debt. This debt decreases
productivity. This loss of productivity is the interest of the
Technical Debt.

@AgileAlliance AgileAlliance

https://www.agilealliance.org/introduction-to-the-technical-debt-concept/

What is Technical Debt?

• There are errors of omission and commission.

• An error of omission is not tech debt — it is YAGNI. It is MVP. It is
narrowing scope in order to release sooner.

• Tech debt is an error of commission. Tech debt is when you put in code
you shouldn’t have.

• “Creating debt” is called “borrowing”

• The most common error of commission is adding a dependency. When
you add a dependency, you are borrowing code. You now have a tech
debt.

• That’s why the fix is “refactoring” and not “implementing that which is
missing”

What gets borrowed?

• The tech that is already there.

• The tech that is “free”.

The tech that is there

• CoffeeScript or JQuery

• PHP or Python

• MySQL or PostgreSQL

• Consul

• Redis

• RedHat or Ubuntu

• Rackspace or AWS

The tech that is free

• Kafka

• Elm

• Node

• Pillow

How to Avoid It

It is not necessary to be sure of
success, only to be unafraid of failure.

• Datatypes

• Democratization

• Independence

• Variations

• Immutability

• Incrementalism

• Standing your ground against
optimization

Datatypes

Refactoring

• Refactoring in the absence of safeguards against
introducing defects (i.e. violating the "behaviour
preserving" condition) is risky. Safeguards include aids to
regression testing including automated unit tests or
automated acceptance tests, and aids to formal
reasoning such as type systems.

@AgileAlliance AgileAlliance

https://www.agilealliance.org/glossary/refactoring/

aids to formal reasoning such as type systems.

• Typescript

• Go, Rust

• Java, Swift, Kotlin

• Protobuf

• Relational Database Tables

JSON is Tech Debt

• Low-level MapReduce interfaces are in terms of byte
arrays

- Hardly ever use textual formats, though: slow, hard to
parse

- Most input & output is in encoded Protocol Buffer
format

@JeffDean Jeff Dean

http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf

Democratization

Use Spreadsheets

Independence (1)

@gvaireth Paweł Zajączkowski

Don’t Have Dependencies

• Adding an unnecessary dependency is manufacturing
technical debt

• All dependencies are unnecessary

$ wc requirements.txt

160 178 2777 requirements.txt

$ wc package.json

145 311 4661 package.json

Only the Giants Survive
• There can be n2 interactions among n components

• Reusable components take 3-5 times longer to write than non-
reusable ones. (Good ones take 50% to 200% longer to write than
mediocre ones)

• Platforms require someone taking responsibility for coherence and
stability.

• Big components (over five million lines of code) work. The cost
of documentation is too high for smaller components.

• Reusable components often consume 100 times the resources of
custom built components. (the reason today's PC is not 10,000 times
more featureful than the Xerox Alto)

Butler Lampson

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/70-SoftwareComponents.doc

Before using a library

• just copy-and-pasting the function you need into your code

• implement it yourself

• if during the course of the implementation, you realize that
the problem is much more complex than you anticipated,
then you now understand the reason for the library

• if the implementation is not that complicated, then you are
done.

An Analysis of Errors in a Reuse-Oriented Development
Environment

(Thomas, Delis, Basili — 1997)

• There is a clear benefit from reuse in terms of reduced error
density when the reuse is verbatim or via slight
modification. However, reuse through slight modification
only shows about a 59% reduction in total error density,
while verbatim reuse results in more than a 90% reduction
compared to newly developed code.

• A number of studies have reported higher defect/error
densities in smaller components than in larger
components (Basili and Perricone, 1984; Shen et al., 1985;
Lind and Vairavan, 1989; Miiller and Paulish, 1993).

http://www.cs.umd.edu/~basili/publications/journals/J70.pdf

Immutability

The Important Question

• I very frequently get the question: 'What's going to change
in the next 10 years?' And that is a very interesting
question; it's a very common one.

• I almost never get the question: 'What's not going to change
in the next 10 years?'

• And I submit to you that that second question is actually
the more important of the two — because you can build a
business strategy around the things that are stable in time.

@JeffBezos Jeff Bezos

The Important Question
• In our retail business, we know that customers want low prices, and I know

that's going to be true 10 years from now.

• They want fast delivery; they want vast selection.

• It's impossible to imagine a future 10 years from now where a customer
comes up and says, 'Jeff I love Amazon; I just wish the prices were a little
higher,' [or] 'I love Amazon; I just wish you'd deliver a little more slowly.'

• Impossible.

• And so the effort we put into those things, spinning those things up, we
know the energy we put into it today will still be paying off dividends for our
customers 10 years from now.

• When you have something that you know is true, even over the long term,
you can afford to put a lot of energy into it."

@JeffBezos Jeff Bezos

You can use an eraser on the drafting table or a
sledgehammer on the construction site.

— Frank Lloyd Wright

Aspire to build software that will
never change.

Some thoughts on security after ten years of qmail

In March 1997, I took the unusual step of publicly offering
$500 to the first person to publish a verifiable security hole
in the latest version of qmail: for example, a way for a user
to exploit qmail to take over another account. My offer still
stands. Nobody has found any security holes in qmail. I
hereby increase the offer to $1000.

@hashbreaker Daniel J. Bernstein

Some thoughts on security after ten years of qmail

@hashbreaker Daniel J. Bernstein

• eliminating bugs

• enforcing explicit data flow

• simplifying integer semantics

• avoid parsing

• eliminating code

• identifying common functions

• automatically handling
temporary errors

• reusing network tools

• reusing access controls

• reusing the file system

• eliminating trusted code

• isolating single source
transformations

• delaying multiple-source
merges

Perhaps the Objective should not be to write
crappy code that you will fiddle with forever

Incrementalism

Don’t use anything new

What is “new”

• New to me? Or New New

• Is Java “new” to a Python shop?

• Is Swift “new” for an iOS app?

• Is AWS Lambda “new” if you haven’t used it before.

The Lindy Effect

the future life expectancy of a technology or an idea is
proportional to its current age

• AIM: dead.

• ICQ: dead.

• MSN: dead.

• Y! chat: dead.

• Google XMPP/Jabber: dead.

• IRC survived.

• Remember that.

@wohali Joan Touzet

Choose Boring Technology

@mcfunley Dan McKinley

http://mcfunley.com/choose-boring-technology

Choose Boring Technology

@mcfunley Dan McKinley

http://mcfunley.com/choose-boring-technology

Master Your Tools

• The new thing won’t be better, you just aren’t aware of all of
the ways it will be terrible yet.

• You should probably be using the tool that you hate the
most. You hate it because you know the most about it.

@mcfunley Dan McKinley

http://boringtechnology.club

For the Love of God, Montresor!
Don’t Optimize

Optimize without adding
dependencies

`äáÉåí

oÉÇáë

a~í~Ä~ëÉ

`äáÉåí

oÉÇáë

a~í~Ä~ëÉ

`äáÉåí

a~í~Ä~ëÉ

c~ëí=
^ÅÅÉëë=
q~ÄäÉ

Cache backend Read time (1) Read time (2) Read time (3) Read time (4) Read time (5)

ElastiCache Memcached 3 ms 3 ms 1 ms 2 ms 1 ms

ElastiCache Redis 4 ms 4 ms 1 ms 2 ms 1 ms

RDS Aurora 9 ms 9 ms 1 ms 10 ms 1 ms

RDS Postgres 3 ms 3 ms (*) 1 ms 16 ms 1 ms (*)

RDS MySQL 13 ms 8 ms 1 ms 17 ms 1 ms

SimpleDB 59 ms 56 ms 20 ms 105 ms 19 ms

DynamoDB 60 ms 58 ms 46 ms 56 ms 45 ms

(1) 1 read within Lambda function, no concurrency
(2) 1 read within Lambda function, 20 concurrent Lambda invocations
(3) 1000 reads, no concurrency
(4) 1000 reads with concurrency of 20 parallel reads within Lambda function
(5) 1000 reads, no concurrency within Lambda function, 20 concurrent Lambda invocations
(*) RDS Postgres (using default settings) threw errors on some requests when running 20 concurrent Lambda invocations.

https://sc5.io/posts/amazon-aws-lambda-data-caching-solutions-compared/

http://code.jjb.cc/benchmarking-postgres-vs-redis

So I threw together a simple benchmark. I generated 1000 key/value
pairs, and then accessed random values 100,000 times. I also
benchmarked a third system: in-memory access to a ruby hash. The
results:

•Postgres: 8.9 seconds
•Redis: 5.3 seconds
•Memory: 0.01 seconds

Aspire to One Mechanism for Data
Persistence

HTTP/2

Thinking Through the
Implications of
Microservices

"It is never worth a first-class man's time to express a majority
opinion. By definition, there are plenty of others to do that."

— Hardy

The Nature of the Firm
– Ronald H. Coase

“Naturally, a point must be reached where the costs of
organising an extra transaction within the firm are equal to
the costs involved in carrying out the transaction in the
open market, or, to the costs of organising by another
entrepreneur.”

jçåçäáíÜ

jçåçäáíÜ

jáÅêçëÉêîáÅÉ

jçåçäáíÜ

jáÅêçëÉêîáÅÉ

“Death Star” Architecture Diagrams

As visualized by Appdynamics, Boundary.com and Twitter internal tools

“Death Star” Architecture Diagrams

Netflix Gilt Groupe (12 of 450) Twitter

As visualized by Appdynamics, Boundary.com and Twitter internal tools

Only the Giants Survive
• There can be n2 interactions among n components

• Reusable components take 3-5 times longer to write than non-
reusable ones. (Good ones take 50% to 200% longer to write than
mediocre ones)

• Platforms require someone taking responsibility for coherence and
stability.

• Big components (over five million lines of code) work. The cost of
documentation is too high for smaller components.

• Reusable components often consume 100 times the resources of
custom built components. (the reason today's PC is not 10,000 times
more featureful than the Xerox Alto)

Butler Lampson

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/70-SoftwareComponents.doc

jçåçäáíÜ

jçåçäáíÜ=

cêçåí=båÇ _~Åâ=båÇ

eÉãáäáíÜ eÉãáäáíÜ

Conway’s Law

Any organization that designs a system (defined broadly)
will produce a design whose structure is a copy of the
organization's communication structure.

Dr. Melvin E. Conway

http://www.melconway.com/Home/Committees_Paper.html

qÉí~êíçäáíÜ

qÉí~êíçäáíÜ

qÉí~êíçäáíÜ

qÉí~êíçäáíÜ

“Death Star” Architecture Diagrams

Netflix Gilt Groupe (12 of 450) Twitter

As visualized by Appdynamics, Boundary.com and Twitter internal tools

Repositories Running
Instances

Repositories Running
Instances

AWS Lambda

• every update is versioned

• source code can be included

• the versioning mechanism maps to running code.

Repositories Running
Instances

This has
 a copy of

every version

Your Lambdas Are Your
Versioned Code Repository

Independence (2)

Each developer should develop, test, and
deploy Lambdas on their own AWS account

Store the Data in the Lambda

5 Rules of Programming
• Rule 1. You can't tell where a program is going to spend its time. Bottlenecks

occur in surprising places, so don't try to second guess and put in a speed hack
until you've proven that's where the bottleneck is.

• Rule 2. Measure. Don't tune for speed until you've measured, and even then don't
unless one part of the code overwhelms the rest.

• Rule 3. Fancy algorithms are slow when n is small, and n is usually small.
Fancy algorithms have big constants. Until you know that n is frequently going to
be big, don't get fancy. (Even if n does get big, use Rule 2 first.)

• Rule 4. Fancy algorithms are buggier than simple ones, and they're much harder
to implement. Use simple algorithms as well as simple data structures.

• Rule 5. Data dominates. If you've chosen the right data structures and
organized things well, the algorithms will almost always be self-evident. Data
structures, not algorithms, are central to programming.

@rob_pike Rob Pike

http://users.ece.utexas.edu/~adnan/pike.html

tms-lite

AWS Lambda
TMS-LiteHTTP Interface

Shipping
Rates

Spreadsheet ETL / Upload

Microservice

User Update

User Request

Harvard

AWS Lambda
TMS-Lite

HTTP Interface

Spreadsheet Build

Microservice

Shipping
Rates

AWS SDK
lambda

 update-function
User Update

User Request

von Neumann

Thinking Through the
Implications of

Refactoring

"The lurking suspicion that something could be
simplified is the world's richest source of
rewarding challenges." — Edsger Dijkstra

Refactoring

★Definition

• Refactoring consists of improving the internal structure of
an existing program's source code, while preserving its
external behavior.

★Common Pitfalls: Refactoring does not mean:

• rewriting code

• fixing bugs

• improve observable aspects of software such as its interface

@AgileAlliance AgileAlliance

https://www.agilealliance.org/glossary/refactoring/

• Adding Types

• Improving Understanding

• Reusable Design Elements

• Variations

• Collective Code Ownership

Adding Types

Refactoring

Refactoring in the absence of safeguards against
introducing defects (i.e. violating the "behaviour
preserving" condition) is risky. Safeguards include aids to
regression testing including automated unit tests or
automated acceptance tests, and aids to formal
reasoning such as type systems.

@AgileAlliance AgileAlliance

https://www.agilealliance.org/glossary/refactoring/

aids to formal reasoning such as type systems.

• CoffeeScript ⇒ Typescript

• Python ⇒ Python with type annotations ⇒ 未定

• JSON ⇒ Protobuf (API)

• JSON ⇒ SQL Tables

• https://quicktype.io

Why is it always "strongly typed" or "weakly typed?" Is there
really no room for "averagely typed?"

@dabeaz David Beazley

JSON is Tech Debt

• Low-level MapReduce interfaces are in terms of byte
arrays

- Hardly ever use textual formats, though: slow, hard to
parse

- Most input & output is in encoded Protocol Buffer
format

@JeffDean Jeff Dean

http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf

Understanding

Refactoring: Expected Benefits

• refactoring improves objective attributes of code (length,
duplication, coupling and cohesion, cyclomatic complexity)
that correlate with ease of maintenance

• refactoring helps code understanding

• refactoring encourages each developer to think about and
understand design decisions, in particular in the context of
collective ownership / collective code ownership

• refactoring favors the emergence of reusable design
elements (such as design patterns) and code modules

@AgileAlliance AgileAlliance

https://www.agilealliance.org/glossary/refactoring/

#!/usr/bin/env python
File name: while.twpy
number = 23
running = True
while running:
 guess = int(raw_input('Enter an integer : '))

 if guess == number:
 print 'Congratulations, you guessed it.'
 running = False # this causes the while loop to stop
 elif guess < number:
 print 'No, it is higher than that.'
 else:
 print 'No, it is lower than that.'
else:
 print 'The while loop is over'
print 'Done'

@houshuang Stian Håklev

#!/usr/bin/env zhpy
檔名: while.py
數數字 = 23
運⾏行行 = 真
當 運⾏行行:
 猜測 = 整數數(輸⼊入('輸⼊入⼀一個數數字: '))

 如果 猜測 == 數數字:
 印出 '恭喜, 你猜對了了.'
 運⾏行行 = 假 # 這會讓循環語句句結束
 假使 猜測 < 數數字:
 印出 '錯了了, 數數字再⼤大⼀一點.'
 否則:
 印出 '錯了了, 數數字再⼩小⼀一點.'
否則:
 印出 '循環語句句結束'
印出 '結束'

@houshuang Stian Håklev

http://chinesepython.org

APL vs. Python

life←{↑1 ⍵∨.∧3 4=+/,¯1 0 1∘.⊖¯1 0 1∘.⌽⊂⍵}

def life_step_1(X):
 """Game of life step using generator expressions"""
 nbrs_count = sum(np.roll(np.roll(X, i, 0), j, 1)
 for i in (-1, 0, 1) for j in (-1, 0, 1)
 if (i != 0 or j != 0))
 return (nbrs_count == 3) | (X & (nbrs_count == 2))

APL vs. Python
@brief Metodo principal de execucao, aplica as regras a um estado
da matriz
def executa_passo_jogo(self):
 lista_mudanca_estado = []
 # Verifica quais celulas devem mudar o estado (nascer/morrer),
 # agendando a mudanca para um loop posterior
 for i in range(0, self._tamanho_total):
 vizinhos = self._conta_vizinhos(i)

 # Celulas vivas so permanecem vivas com um
 # pop_baixa <= n <= pop_alta, n sendo o numero de vizinhos.
 if self._matriz_jogo[i].esta_viva():
 if (vizinhos < self._pop_baixa) or (vizinhos > self._pop_alta):
 lista_mudanca_estado.append(i)
 # Celulas mortas se tornam vivas com exatamente pop_alta vizinhos.
 else:
 if vizinhos == self._pop_alta:
 lista_mudanca_estado.append(i)
 # Aplica mudancas determinadas no estagio anterior
 for i in lista_mudanca_estado:
 self._matriz_jogo[i].muda_estado()

1986

Writing specs is like flossing: everybody agrees
that it's a good thing, but nobody does it.

@spolsky Joel Spolsky

You’ll need a Technical Writer
Or a Teacher

Reusable Design Elements

Before software can be reusable, it first has to
be usable.

 — Ralph Johnson

Conway’s Law

Any organization that designs a system (defined broadly)
will produce a design whose structure is a copy of the
organization's communication structure.

Dr. Melvin E. Conway

http://www.melconway.com/Home/Committees_Paper.html

• Reusable design elements will be
produced only by the team whose purpose
is to produce reusable design elements.

• That team may be called

• shared services

• infrastructure

• brand management

• graphic design

Only the Giants Survive

• There can be n2 interactions among n components

• Reusable components take 3-5 times longer to write than good ones.
(Good ones take 50% to 200% longer to write than mediocre ones)

• Platforms require someone taking responsibility for coherence and
stability.

• Big components (over five million lines of code) work. The cost of
documentation is too high for smaller components.

• Reusable components often consume 100 times the resources of
custom built components. (the reason today's PC is not 10,000
times more featureful than the Xerox Alto)

Butler Lampson

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/70-SoftwareComponents.doc

Hardware

Operating System

Platform Library

Your Shared Library

Application Application Application

AWS

Ubuntu

Python+Requirements

Your Shared Library

Application Application Application

AWS

Ubuntu

Python+Requirements

Your Shared Library

Application Application Application

}{

AWS

Ubuntu

Python+Requirements

Your Shared Library

Application Application Application

Sedimentary Software

AWS

Ubuntu

Python+Requirements

Your Shared Library

Applic Applic Applic

iPhone

iOS

UIKit

Your Shared Library

Applic Applic Applic

Desktop

Web Browser

React

Your Shared Library

Applic Applic Applic

Variations

"One accurate measurement is worth a
thousand expert opinions." — Grace Hopper

Comment Old Code CommentCode More Code

Original

Comment Old Code CommentCode More Code

Original

Prepare Old Code

New Code

Compare
and

Log Timing
Code More Code

Log

Version ++

Use Old Answer

The Variation Pattern

Prepare Old Code

New Code

Compare
and

Log Timing
Code More Code

Log

Version ++

Use New Answer

Comment

New Code

CommentCode More Code

Version +3

Refactoring: Expected Benefits

• refactoring improves objective attributes of code (length,
duplication, coupling and cohesion, cyclomatic complexity)
that correlate with ease of maintenance

• refactoring helps code understanding

• refactoring encourages each developer to think about
and understand design decisions, in particular in the
context of collective ownership / collective code
ownership

• refactoring favors the emergence of reusable design
elements (such as design patterns) and code modules

@AgileAlliance AgileAlliance

https://www.agilealliance.org/glossary/refactoring/

Collective Code Ownership

• “collective code ownership” is the
organizational manifestation of “monolith”

• if everybody must be prepared to maintain
any part of the collective code base, as the
code base scales, the cognitive load for
each developer increases

• if the code base is partitioned so that only
some people must be prepared to
maintain certain sections, then the
ownership is no longer collective, but
partitioned

Conway’s Law

Any organization that designs a system (defined broadly)
will produce a design whose structure is a copy of the
organization's communication structure.

Dr. Melvin E. Conway

http://www.melconway.com/Home/Committees_Paper.html

jçåçäáíÜ=

eÉãáäáíÜ eÉãáäáíÜ

Front End
CoffeeScript

Back End
Python

qÉí~êíçäáíÜ

qÉí~êíçäáíÜ

qÉí~êíçäáíÜ

qÉí~êíçäáíÜ
React

Python

未定

SQL Stored
Procedures

Collective Code Ownership:
Configuration

The Case
Against

Configuration

Robert M. Lefkowitz

@r0ml Robert M. Lefkowitz

Lessons Learned from Reading Postmortems

Configuration bugs, not code bugs, are the most common
cause I’ve seen of really bad outages. When I looked at
publicly available postmortems, searching for “global outage
postmortem” returned about 50% outages caused by
configuration changes.

@danluu Dan Luu

http://danluu.com/postmortem-lessons/

@AriTalking Ariel Rabkin

http://digitalassets.lib.berkeley.edu/etd/ucb/text/Rabkin_berkeley_0028E_12373.pdf

Figure 2.1. Breakdown of support tickets and time by category.

Figure 2.1 breaks down support time and tickets by root cause, excluding non-diagnostic tick-
ets. Figure 2.2 displays average resolution time for each category. As can be seen, bugs take
longer to resolve than most other failure causes. However, misconfigurations are more common
and account for more total time. Hardware problems are rare, but can take a long time to diagnose.

The number of distinct bugs is smaller than the number of tickets caused by bugs. 30% of
bug tickets werefound to be already-known issues slated for fixing in the next version. Over a
third of issues without a definitive root cause went away after an upgrade, suggesting that they too
were caused by known bugs. This evidence suggests that bugs in a given version tend to manifest
quickly and at multiple sites. The measurements for this report include the beta-test period for
CDH version 3, so there will have been a higher-than-normal rate of bugs and of upgrades.

In some support contexts, a handful of common issues account for a large fraction of cases.That
is not the case for Cloudera. Even the most common specific issues account for no more than 2%
or 3% of support cases. This is evidence that the existing process is decently good at learning from
past experiences and preventing common issues. In this context, permanently preventing an issue
can involve both fixes to the Hadoop platform and extra documentation to explain common prob-
lems, letting users can resolve them without additional help. Our data does not let us distinguish
the relative importance of these two corrective actions.

The next subsection goes into more detail on misconfiguration problems, since those are the
primary focus of this dissertation. Following that, we describe limitations of our data and methods.

14

• In a world where software is proprietary,
how can you modify its behavior for
different computing environments?

• Data files containing configuration
information.

Start

Load

Parse

Run

Apply

Config

Start

Load

Parse

Run

Start

Apply

Config

Configuration files are
inferior to code...

• Linguistically

• Editability

• Auditability

• Functionality

• Deployability

_~Åâ=båÇ

`çåëìä

a~í~Ä~ëÉ

React

ÜìåÇêÉÇë=çÑ==
âÉóLî~äìÉ=é~áêë

millions of
key/value pairs

_~Åâ=båÇ

`çåëìä

a~í~Ä~ëÉ

React

çåÉ=âÉó=L=î~äìÉ=é~áê=
Ç~í~Ä~ëÉ=ÅçååÉÅíáçå=ëíêáåÖ

millions + hundreds of
key/value pairs

_~Åâ=båÇ

a~í~Ä~ëÉ

database connection string
as an environment variable

millions + hundreds of
key/value pairs

Collective Code Ownership:
Dependencies

Refactoring: Expected Benefits

• refactoring improves objective attributes of code (length,
duplication, coupling and cohesion, cyclomatic complexity)
that correlate with ease of maintenance

• refactoring helps code understanding

• refactoring encourages each developer to think about
and understand design decisions, in particular in the
context of collective ownership / collective code ownership

• refactoring favors the emergence of reusable design
elements (such as design patterns) and code modules

@AgileAlliance AgileAlliance

https://www.agilealliance.org/glossary/refactoring/

Eliminate Dependencies

$ wc requirements.txt

160 178 2777 requirements.txt

$ wc package.json

145 311 4661 package.json

Only the Giants Survive
• There can be n2 interactions among n components

• Reusable components take 3-5 times longer to write than non-
reusable ones. (Good ones take 50% to 200% longer to write than
mediocre ones)

• Platforms require someone taking responsibility for coherence and
stability.

• Big components (over five million lines of code) work. The cost of
documentation is too high for smaller components.

• Reusable components often consume 100 times the resources of
custom built components. (the reason today's PC is not 10,000
times more featureful than the Xerox Alto)

Butler Lampson

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/70-SoftwareComponents.doc

Questions?

@r0ml

