Tech Debt
A Master Class

— e ——

(@rOml

Outline

e What is “Technical Debt”?
¢ avoiding it
e implications of “microservices”

e implications of “retactoring”

What 1s “Technical Debt”?

Design-Build Delivers: The New Tappan Zee Bridge

You don't have to be a New Yorker to appreciate the engineering,
design, construction and political marvel that is the new Tappan Zee
bridge. Dubbed the “3$4 Billion Marvel” by The New York Times, the
impressive bridge project hosts its first drivers this weekend:

“The new bridge is a symphony of statistics. More than 1,000
cylindrical piles were planted into the Hudson riverbed to create
41 pillars to hold up each span. Some 330,000 cubic yards of
concrete were poured In construction, including some 6,000
precast concrete road deck panels. The main decks of both
spans are held up by 192 cables stretched among eight 419-foot
angled towers. The bridge will handle 140,000 cars a day.”

None of this could have happened without design-build.

http:/ /www.designbuilddoneright.com /design-build-delivers-the-new-tappan-zee-bridge /

https://www.nytimes.com/2017/08/24/nyregion/tappan-zee-bridge-opening.html

Design-Build vs. Design-Bid-Build

e https:/ /en.wikipedia.org/wiki/Design—build

e Until 1979, the AIA American Institute of Architects' code of ethics and
professional conduct prohibited their members from providing construction
SErvices.

e In 1993, the Design-Build Institute of America (DBIA)[4] was formed.

e Design—build is sometimes compared to the "master builder" approach, one
of the oldest forms of construction procedure. Comparing design—build to the
traditional method of procurement, the authors of Design-build Contracting
Handbook noted that: “from a historical perspective the so-called traditional
approach is actually a very recent concept, only being in use
approximately 150 years. In contrast, the design—-build concept—also
known as the "master builder" concept—has been reported as being in use
for over four millennia.”|[2]

Mythical Man Month

To make a user-friendly system, the system must have
conceptual integrity, which can only be achieved by
separating architecture from implementation. A single chief
architect (or a small number of architects), acting on the
user's behalt, decides what goes in the system and what
stays out.

Lowering Software Development Costs

e Implementers may be hired only after the architecture ot
the system has been completed (a step that may take
several months, during which time prematurely-hired
implementers may have nothing to do).

e Do not develop software. Buy it "oif the shelf’ instead.

https:/ /en.wikipedia.org/wiki/
Software_architect

The software architect concept began to take hold when
object-oriented programming or OOP, was coming into more
widespread use (in the late 1990s and early years of the
21st century).|citation needed| OOP allowed ever-larger
and more complex applications to be built, which in turn
required increased high-level application and system

oversight.

this slide intentionally left blank

(@wardcunningham Ward Cunningham

1992

"Shipping first-time code is like going into debt. A little debt
speeds development so long as it is paid back promptly with
a rewrite. Objects make the cost of this transaction
tolerable. The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts as
interest on that debt. Entire engineering organizations can
be brought to a stand-still under the debt load of an
unconsolidated implementation, object-oriented or

otherwise."

(@martinfowler Martin Fowler

2003

The tricky thing about technical debt, of course, is that
unlike money it's impossible to measure etftectively. The

interest payments hurt a team's productivity, but since we
CannotMeasureProductivity, we can't really see the true
effect of our technical debt.

(@rstephensme Rachel Stephens

Why does this metaphor fall short?

e “managers don’t care about technical debt interest
payments.”

¢ it should be about “risk”, not “debt”

http:/ /redmonk.com /rstephens/2017/08/08 /technical-debt/

CHANGEABILITY CHANGEABILITY

- I
Risk of critical Risk of Risk of security Ease and speed Ease and speed
failures in performance breaches of modifying of Learning
production Issues
o T >
User productivity | | Time - to - market
Customers satisfaction : : Business agility
Brand equity | | Revenue opportunities
|
|
o0

S T . T
0: | /| www.castsoftware.com

— 7 J

http://www.castsoftware.com

(@raltw Ralf Westphal

There is no such thing as technical Debt

e do you know when you got into debt?
e did you ask someone for a loan?

e do you know how much you owe?

e do you know what your payments are?
e who do you owe?

¢ is anybody threatening you for failure to pay back the loan?

http:/ /geekswithblogs.net/theArchitectsNapkin/archive/2015/07 /22 /there-is-no-such-thing-as-technical-debt.aspx

@AgileAlliance AgileAlliance

We could summarize the metaphor as follows:

When taking short cuts and delivering code that is not

quite right for the programming task of the moment, a
development team incurs Technical Debt. This debt decreases

productivity. This loss of productivity is the interest of the
Technical Debt.

https:/ /www.agilealliance.org/introduction-to-the-technical-debt-concept/

What i1s Technical Debt?

e There are errors of omission and commission.

e An error of omission is not tech debt — it is YAGNI. It is MVP. It is
narrowing scope in order to release sooner.

e Tech debt is an error of commission. Tech debt is when you put in code
you shouldn’t have.

¢ “Creating debt” is called “borrowing”

e The most common error of commission is adding a dependency. When

you add a dependency, you are borrowing code. You now have a tech
debt.

e That’s why the fix is “refactoring” and not “implementing that which is
missing”

What gets borrowed?

e The tech that is already there.
e The tech that is “free”.

The tech that i1s there

e CofteeScript or JQuery
e PHP or Python

e MySQL or PostgreSQL
e Consul

e Redis

e RedHat or Ubuntu

e Rackspace or AWS

The tech that is free

o Katka
e Elm
e Node

e Pillow

How to Avoid It

[t 1s not necessary to be sure of
success, only to be unatraid ot tailure.

e Datatypes

e Democratization
e Independence

¢ Variations

e Immutability

e Incrementalism

e Standing your ground against
optimization

Datatypes

@AgileAlliance AgileAlliance

Retactoring

e Refactoring in the absence of sateguards against
introducing detects (i.e. violating the "behaviour
preserving"' condition) is risky. Safeguards include aids to
regression testing including automated unit tests or
automated acceptance tests, and aids to formal
reasoning such as type systems.

https:/ /www.agilealliance.org/glossary/retactoring/

aids to formal reasoning such as type systems.

o Typescript
e GO, Rust
e Java, Swift, Kotlin

e Protobut

e Relational Database Tables

(@JetfDean Jefl Dean

JSON i1s Tech Debt

e Low-level MapReduce interfaces are in terms of byte
arrays

- Hardly ever use textual formats, though: slow, hard to
parse

- Most input & output is in encoded Protocol Buffer
format

http:/ /www.cs.cornell.edu/projects /ladis2009 /talks /dean-keynote-ladis2009.pdt

Democratization

Use Spreadsheets

Independence (1)

(@gvaireth Pawet Zajaczkowski

Don’t Have Dependencies

e Adding an unnecessary dependency is manufacturing
technical debt

e All dependencies are unnecessary

S wC requirements. txt

160 178 2777 requirements. txt

S wc package. json

145 311 4661 package.json

Butler Lampson

Only the Giants Survive

e There can be n? interactions among n components

e Reusable components take 3-5 times longer to write than non-
reusable ones. (Good ones take 50% to 200% longer to write than
mediocre ones)

e Platforms require someone taking responsibility for coherence and
stability.

e Big components (over five million lines of code) work. The cost
of documentation is too high for smaller components.

e Reusable components often consume 100 times the resources of
custom built components. (the reason today's PC is not 10,000 times
more featureful than the Xerox Alto)

https:/ /www.microsoft.com/en-us/research /wp-content/uploads/2016/02/70-SoftwareComponents.doc

Before using a library

e just copy-and-pasting the function you need into your code
e implement it yourseltf

o if during the course of the implementation, you realize that
the problem i1s much more complex than you anticipated,
then you now understand the reason for the library

o if the implementation is not that complicated, then you are
done.

An Analysis of Errors in a Reuse-Oriented Development
Environment

(Thomas, Delis, Basili — 1997)

e There is a clear benefit from reuse in terms of reduced error
density when the reuse is verbatim or via slight
modification. However, reuse through slight modification
only shows about a 59% reduction in total error density,
while verbatim reuse results in more than a 90% reduction
compared to newly developed code.

e A number of studies have reported higher defect/error
densities in smaller components than in larger

components (Basili and Perricone, 1984; Shen et al., 1985;
Lind and Vairavan, 1989; Miiller and Paulish, 1993).

http:/ /www.cs.umd.edu/~basili/publications/journals /J70.pdf

Immutability

@JetiBezos Jeif Bezos

The Important Question

o | very frequently get the question: 'What's going to change
in the next 10 years?' And that is a very interesting
question; it's a very common one.

e | almost never get the question: 'What's not going to change
in the next 10 years?'

e And I submit to you that that second question 1s actually
the more important of the two — because you can build a
business strategy around the things that are stable in time.

@JetiBezos Jeif Bezos

The Important Question

e [n our retail business, we know that customers want low prices, and I know
that's going to be true 10 years from now.

e They want fast delivery; they want vast selection.

o [t's impossible to imagine a future 10 years from now where a customer
comes up and says, Jeif I love Amazon; I just wish the prices were a little
higher,' [or] 'I love Amazon; I just wish you'd deliver a little more slowly.'

e Impossible.

e And so the effort we put into those things, spinning those things up, we
know the energy we put into it today will still be paying off dividends for our
customers 10 years from now.

e When you have something that you know is true, even over the long term,
you can afford to put a lot of energy into it."

You can use an eraser on the dratting table or a

sledgehammer on the construction site.
— Frank Lloyd Wright

Aspire to build software that will
never change.

@hashbreaker Daniel J. Bernstein

Some thoughts on security after ten years ot gmail

In March 1997, I took the unusual step of publicly offering
$500 to the first person to publish a verifiable security hole
in the latest version of gmail: for example, a way for a user
to exploit gmail to take over another account. My offer still
stands. Nobody has found any security holes in gmail. I
hereby increase the offer to $1000.

@hashbreaker Daniel J. Bernstein

Some thoughts on security after ten years ot gmail

e climinating bugs e reusing network tools
e enforcing explicit data tflow e reusing access controls
e simplifying integer semantics e reusing the file system
e avoid parsing e climinating trusted code
e climinating code ¢ isolating single source
transformations

e identifying common functions

e delaying multiple-source
® autOmatically handllng merges

temporary errors

Perhaps the Objective should not be to write
crappy code that you will fiddle with forever

Incrementalism

Don’t use anything new

What 1s “new”

e New to me? Or New New
e [s Java “new” to a Python shop?
o [s Swiit “new” for an 10OS app?

e [s AWS Lambda “new” if you haven’t used it before.

The Lindy Eifect

the future life expectancy of a technology or an idea is
proportional to its current age

(@wohali Joan Touzet

e AIM: dead.

e JCQ: dead.

e MSN: dead.

e Y! chat: dead.

e Google XMPP/Jabber: dead.
¢ [RC survived.

e Remember that.

(@mciunley Dan McKinley

Choose Boring Technology

http:/ /mcifunley.com/choose-boring-technology

(@mciunley Dan McKinley

Choose Boring Technology

http:/ /mcifunley.com/choose-boring-technology

(@mciunley Dan McKinley

Master Your Tools

e The new thing won’t be better, you just aren’t aware of all of
the ways it will be terrible yet.

e You should probably be using the tool that you hate the
most. You hate it because you know the most about it.

http:/ /boringtechnology.club

For the Love of God, Montresor!
Don’t Optimize

Optimize without adding
dependencies

https:/ /scS5.10/posts/amazon-aws-lambda-data-caching-solutions-compared /

Cache backend Read time (1) |[Read time(2) |Read time (3) |Read time (4) |Read time (5)
ElastiCache Memcached |3 ms 3ms 1ms 2 MS 1ms
ElastiCache Redis 4 ms 4 ms 1ms 2 ms 1ms

RDS Aurora 9ms 9ms 1ms 10 ms 1ms

RDS Postgres 3 ms 3 ms (*) 1ms 16 ms 1 ms(*)

RDS MySQOL 13 ms 8 MS 1ms 1/ ms 1ms
SimpleDB 59 ms 56 ms 20 ms 105 ms 19 ms
DynamoDB 60 ms 58 ms 46 ms 56 Ms 45 ms

(1) 1 read within Lambda function, no concurrency

(2) 1 read within Lambda function, 20 concurrent Lambda invocations

(3) 1000 reads, no concurrency

(4) 1000 reads with concurrency of 20 parallel reads within Lambda function

(5) 1000 reads, no concurrency within Lambda function, 20 concurrent Lambda invocations

(*) RDS Postgres (using default settings) threw errors on some requests when running 20 concurrent Lambda invocations.

http:/ /code.jjb.cc/benchmarking-postgres-vs-redis

So | threw together a simple benchmark. | generated 1000 key/value
pairs, and then accessed random values 100,000 times. | also

benchmarked a third system: in-memory access to a ruby hash. The
results:

e Postgres: 8.9 seconds
e Redis: 5.3 seconds
e Memory: 0.01 seconds

Aspire to One Mechanism for Data
Persistence

HTTP/2

Thinking Through the

Implications ot
Microservices

'It 1s never worth a first-class man's time to express a majority
opinion. By definition, there are plenty of others to do that.”

— Hardy

The Nature of the Firm
— Ronald H. Coase

“Naturally, a point must be reached where the costs ot
organising an extra transaction within the firm are equal to
the costs involved in carrying out the transaction in the
open market, or, to the costs of organising by another
entrepreneur.”

Microservice

“Death Star” Architecture Diagrams

Netflix Gilt Groupe (12 of 450) Twitter

As visualized by Appdynamics, Boundary.com and Twitter internal tools

Butler Lampson

Only the Giants Survive

e There can be n? interactions among n components

e Reusable components take 3-5 times longer to write than non-
reusable ones. (Good ones take 50% to 200% longer to write than
mediocre ones)

e Platforms require someone taking responsibility for coherence and
stability.

e Big components (over five million lines of code) work. The cost of
documentation is too high for smaller components.

e Reusable components often consume 100 times the resources of
custom built components. (the reason today's PC is not 10,000 times
more featureful than the Xerox Alto)

https:/ /www.microsoft.com/en-us/research /wp-content/uploads/2016/02/70-SoftwareComponents.doc

Dr. Melvin E. Conway

Conway’s Law

Any organization that designs a system (defined broadly)
will produce a design whose structure is a copy of the
organization's communication structure.

http:/ /www.melconway.com/Home/Committees_Paper.html

“Death Star” Architecture Diagrams

Netflix Gilt Groupe (12 of 450) Twitter

As visualized by Appdynamics, Boundary.com and Twitter internal tools

Repositories Running

Instances

Running
Instances

Repositories

AWS Lambda

e every update is versioned

e source code can be included

¢ the versioning mechanism maps to running code.

Running
Instances

Repositories

This has

a copy of
EVery version

Your Lambdas Are Your
Versioned Code Repository

Independence (2)

Each developer should develop, test, and
deploy Lambdas on their own AWS account

Store the Data in the Lambda

(@rob_pike Rob Pike

5 Rules of Programming

e Rule 1. You can't tell where a program is going to spend its time. Bottlenecks
occur in surprising places, so don't try to second guess and put in a speed hack
until you've proven that's where the bottleneck is.

e Rule 2. Measure. Don't tune for speed until you've measured, and even then don't
unless one part of the code overwhelms the rest.

e Rule 3. Fancy algorithms are slow when n is small, and n is usually small.
Fancy algorithms have big constants. Until you know that n is frequently going to
be big, don't get fancy. (Even if n does get big, use Rule 2 first.)

e Rule 4. Fancy algorithms are buggier than simple ones, and they're much harder
to implement. Use simple algorithms as well as simple data structures.

e Rule 5. Data dominates. If you've chosen the right data structures and
organized things well, the algorithms will almost always be self-evident. Data
structures, not algorithms, are central to programming.

http:/ /users.ece.utexas.edu/~adnan/pike.html

tms-lite

Harvard

Microservice

AWS Lambda
(User Request>< > HTTP Interface - - TMS-Lite

3

Shipping
Rates

N

(User Update)4 p| Spreadsheet | g > ETL / Upload

\/

von Neumann

(User Request><

/ Microservice

< User Update)4

_/

AWS Lambda
TMS-Lite
HTTP Interface >
Shipping
Rates
/
AWS SDK
p-| Spreadsheet | > Build < > lambda

update-function

Thinking Through the

Implications ot
Retactoring

"The lurking suspicion that something could be
simplified is the world's richest source of
rewarding challenges." — Edsger Dijkstra

@AgileAlliance AgileAlliance

Retactoring

Y Definition

e Refactoring consists of improving the internal structure ot
an existing program's source code, while preserving its
external behavior.

% Common Pitfalls: Refactoring does not mean:
e rewriting code
o fixing bugs

e improve observable aspects of software such as its interface

https:/ /www.agilealliance.org/glossary/retactoring/

e Adding Types

e Improving Understanding
¢ Reusable Design Elements
e Variations

¢ Collective Code Ownership

Adding Types

@AgileAlliance AgileAlliance

Retactoring

Refactoring in the absence of sateguards against
introducing detects (i.e. violating the "behaviour
preserving"' condition) is risky. Safeguards include aids to
regression testing including automated unit tests or
automated acceptance tests, and aids to formal
reasoning such as type systems.

https:/ /www.agilealliance.org/glossary/retactoring/

aids to formal reasoning such as type systems.

o CoffeeScript = Typescript

e Python = Python with type annotations = K&
¢ JSON = Protobuf (API)

e JSON = SQL Tables
e https:/ /quicktype.io

(@wdabeaz David Beazley

Why is it always "strongly typed" or "weakly typed?" Is there
really no room for "averagely typed?"

(@JetfDean Jefl Dean

JSON i1s Tech Debt

e Low-level MapReduce interfaces are in terms of byte
arrays

- Hardly ever use textual formats, though: slow, hard to
parse

- Most input & output is in encoded Protocol Buffer
format

http:/ /www.cs.cornell.edu/projects /ladis2009 /talks /dean-keynote-ladis2009.pdt

Understanding

@AgileAlliance AgileAlliance

Refactoring: Expected Benefits

 refactoring improves objective attributes of code (length,
duplication, coupling and cohesion, cyclomatic complexity)
that correlate with ease of maintenance

* refactoring helps code understanding

e refactoring encourages each developer to think about and
understand design decisions, in particular in the context of
collective ownership / collective code ownership

 refactoring favors the emergence of reusable design
elements (such as design patterns) and code modules

https:/ /www.agilealliance.org/glossary/retactoring/

@houshuang Stian Haklev

#!/usr/bin/env python

File name: while. twpy
number = 23

running = True

while running:
guess = int(raw input('Enter an integer : '))

1f guess == number:
print 'Congratulations, you guessed 1it.'
running = False # this causes the while loop to stop

elif guess < number:
print 'No, it i1is higher than that.'

else:
print 'No, 1t 1s lower than that.'

else:
print 'The while loop 1s over'

print 'Done'’

@houshuang Stian Haklev

#!'/usr/bin/env zhpy
t§8: while.py

#HF = 23
BT = K
= 1E1T:
B = B (@A (CBA—EHF: "))

MR FH == EHF:
ElH '&HRE, RIBE7T .
B1T = R # ESRMBEIRS04ER
iE BH < &F:
EN '#87, BFHAKRK—E."
-3:lIE
EN '#87, BH=FH/ND—E5.
-3:lIE
EN '1BIREE04ER
ENH 4R

http:/ /chinesepython.org

APL vs. Python

lifee{T1l wv.A3 4=+/, 1 0 1l0.© 1 0 1lo. Ocw}

def li1fe step 1(X):
"""Ganme of |i1fe step using generator expressions"""

nbrs count = sun(np.roll(np.roll (X, 1, 0),], 1)
for 1 1n (-1, 0, 1) for | In (-1, 0O, 1)
1f (1 '=0o0or J '=0))

return (nbrs count == 3) | (X & (nbrs _count == 2))

APL vs. Python

@ri ef Met odo princi pal de execucao, aplica as regras a um estado
da matri z
def executa passo | ogo(sel f):

| 1 sta_nudanca_estado = []

Verifica quais celulas devem nudar o estado (nascer/norrer),

agendando a nudanca para um | oop posteri or

for 1 1n range(0, self. tanmanho total):

vi zi nhos = self. conta vi zinhos(I)

Celul as vivas so pernanecem vivas com um
pop_balixa <= n <= pop_alta, n sendo o nunero de vi zi nhos.
| f self. matriz jogo[i].esta viva():
| f (vizinhos < self. pop _baixa) or (vizinhos > self. pop alta):
| 1 sta_nudanca_est ado. append(1)
Celulas nortas se tornamvivas com exatanente pop _alta vizinhos.
el se:
| f vizinhos == self. pop_alta:
| 1 sta _nmudanca_est ado. append(1)
Aplica nudancas determ nadas no estagi o anteri or
for 1 1n liIsta mudanca est ado:
self. matriz jogo[l].nuda estado()

1986

(@spolsky Joel Spolsky

Writing specs is like tlossing: everybody agrees
that it's a good thing, but nobody does it.

You’'ll need a Technical Writer
Or a Teacher

Reusable Design Elements

Before software can be reusable, it first has to
be usable.
— Ralph Johnson

Dr. Melvin E. Conway

Conway’s Law

Any organization that designs a system (defined broadly)
will produce a design whose structure is a copy of the
organization's communication structure.

http:/ /www.melconway.com/Home /Committees_Paper.html

e Reusable design elements will be
produced only by the team whose purpose
1s to produce reusable design elements.

e That team may be called

e shared services
e infrastructure
e brand management

e sraphic design

Butler Lampson

Only the Giants Survive

e There can be n? interactions among n components

e Reusable components take 3-5 times longer to write than good ones.
(Good ones take 50% to 200% longer to write than mediocre ones)

e Platforms require someone taking responsibility for coherence and
stability.

e Big components (over five million lines of code) work. The cost of
documentation is too high for smaller components.

e Reusable components often consume 100 times the resources of
custom built components. (the reason today's PC is not 10,000
times more featureful than the Xerox Alto)

https:/ /www.microsoft.com/en-us/research /wp-content/uploads/2016/02/70-SoftwareComponents.doc

Application § Application § Application

Your Shared Library

Platform Library

Operating System

Hardware

Application § Application § Application

Your Shared Library

Python+Requirements

Ubuntu

Application § Application § Application

Your Shared Library

Python+Requirements

Ubuntu

Application § Application § Application

Your Shared Library

Python+Requirements

Ubuntu

AWS

Sedimentary Software

M

Your Shared Library

1
&
1

w

W

Your Shared Library

1
[

M

Your Shared Library

React

UIKit

Python+Requirements

Ubuntu {ON) Web Browser

AWS tPhone

Desktop

Variations

'"One accurate measurement 1s worth a
thousand expert opinions." — Grace Hopper

Code

Old Code

Original

More Code

Code

Comment

Old Code

Original

Comment

More Code

The Variation Pattern

Code

Prepare

Old Code

>

Log

\f/

Compare
and
Log Timing

> More Code

New Code

Version ++

Use Old Answer

Code

Prepare

Old Code

>

Log

\f/

Compare
and
Log Timing

> More Code

New Code

Version ++

Use New Answer

Code

Comment

Comment

New Code

Version +3

More Code

@AgileAlliance AgileAlliance

Refactoring: Expected Benefits

 refactoring improves objective attributes of code (length,
duplication, coupling and cohesion, cyclomatic complexity)
that correlate with ease of maintenance

 refactoring helps code understanding

* refactoring encourages each developer to think about
and understand design decisions, in particular in the
context of collective ownership / collective code
ownership

 refactoring favors the emergence of reusable design
elements (such as design patterns) and code modules

https:/ /www.agilealliance.org/glossary/retactoring/

Collective Code Ownership

e “collective code ownership” is the
organizational manifestation of “monolith”

¢ if everybody must be prepared to maintain
any part of the collective code base, as the
code base scales, the cognitive load for
each developer increases

e if the code base is partitioned so that only
some people must be prepared to
maintain certain sections, then the
ownership 1s no longer collective, but
partitioned

Dr. Melvin E. Conway

Conway’s Law

Any organization that designs a system (defined broadly)
will produce a design whose structure is a copy of the
organization's communication structure.

http:/ /www.melconway.com/Home/Committees_Paper.html

Front End Back End
CofteeScript Python

Python

Tetartolith

™~

Tetartolith

SQL Stored
Procedures

React

Collective Code Ownership:
Configuration

(@rOml Robert M. Letkowitz

The Case
Against
Configuration

— e ——

Robert M. Letkowitz

(@danluu Dan Luu

Lessons Learned from Reading Postmortems

Configuration bugs, not code bugs, are the most common
cause I've seen of really bad outages. When I looked at
publicly available postmortems, searching for “global outage
postmortem” returned about 50% outages caused by

configuration changes.

http:/ /danluu.com/postmortem-lessons/

s
e
O
S
0%
s
=
<
l
QL Qcmcc
5 Q.S\o
9
%a IMRIAI_SN° S1y,
—~ S9sed diysoubelp Jo abejuadiad
'O
s

http:/ /digitalassets.lib.berkeley.edu/etd /ucb/text/Rabkin_berkeley O028E_12373.pdf

* In a world where software is proprietary,
how can you modify its behavior for
different computing environments?

e Data files containing configuration
information.

(Start)

Confilg ——|| Load

Parse

Run

Config

Run

Configuration files are
interior to code...

* Linguistically
e Editability

* Auditability
* Functionality

* Deployability

hundreds of
key/value pairs

Consul

Database

millions of
key/value pairs

React

one key / value pair
database connection string

Consul

Database

millions + hundreds of
key/value pairs

React

Database

millions + hundreds of
key/value pairs

database connection string
as an environment variable

Collective Code Ownership:
Dependencies

@AgileAlliance AgileAlliance

Refactoring: Expected Benefits

 refactoring improves objective attributes of code (length,
duplication, coupling and cohesion, cyclomatic complexity)
that correlate with ease of maintenance

* refactoring helps code understanding

* refactoring encourages each developer to think about
and understand design decisions, in particular in the
context of collective ownership / collective code ownership

 refactoring favors the emergence of reusable design
elements (such as design patterns) and code modules

https:/ /www.agilealliance.org/glossary/retactoring/

Eliminate Dependencies

S wC requirements. txt

160 178 2777 requirements. txt

S wc package. json

145 311 4661 package.json

Butler Lampson

Only the Giants Survive

e There can be n? interactions among n components

e Reusable components take 3-5 times longer to write than non-
reusable ones. (Good ones take 50% to 200% longer to write than
mediocre ones)

e Platforms require someone taking responsibility for coherence and
stability.

e Big components (over five million lines of code) work. The cost of
documentation is too high for smaller components.

e Reusable components often consume 100 times the resources of
custom built components. (the reason today's PC is not 10,000
times more featureful than the Xerox Alto)

https:/ /www.microsoft.com/en-us/research /wp-content/uploads/2016/02/70-SoftwareComponents.doc

Questions?

+

(@rOml

