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Why stream processing?
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Event
Producers

Sinks

highly available ingest pipelines - the 
backbone of a real-time data infrastructure
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Exact-once semantics for stateful computation

Source: http://flink.apache.org/



Flexible windowing

Source: http://flink.apache.org/



Event time semantics

Source: http://flink.apache.org/



State backends and checkpointing

Available

● Memory

● File system

● RocksDB (support 

incremental checkpoint)

Source: http://flink.apache.org/



Source: http://flink.apache.org/

Checkpoint is lightweight



Source: Stephan Ewen
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Offerings by complexity

● Simple drag and drop: filter, projection, data hygiene

○ Available now via Keystone router

● Medium: SQL, UDF (User Defined Function)

○ Coming 2018

● Advanced: custom stream processing applications

○ Available now
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SPaaS running on Titus
(Netflix’s in-house container runtime)



Job isolation: single job

Job 
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standalone

cluster
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Events are polled by router, filter and 
projection applied
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Router sends events to destination
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Keystone pipeline system boundary
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Event
Producers

Sinks

highly available ingest pipelines



Keystone scale

● >1,000,000,000 unique events 

ingested per day 

● >99.9999% of delivery rate 



Demo: provision a data stream 
(mini pipeline) 



https://docs.google.com/file/d/1axD_Jz2I7y1o9l1e1opxYG1Qbn4sqLCc/preview


Configure 
outputs



Drag-and-drop Keystone router

● Stateless and embarrassingly parallel

● ~2,000 jobs in prod

● Self serve and fully managed

● At least once delivery semantics

● Isolation
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Out-Of-The-Box Functionality

● Templates (Java / 

Scala)

● Build and Deployment 

tooling

● Connectors

● Dashboards

● Logs

● Alerts

● Titus Integration

● Capacity 

Management



Demo: SPaaS project bootstrap



https://docs.google.com/file/d/1AoxJNWNPP70kvwfGAhnzaXvwKoL7ltbZ/preview


Skeleton code



Add business logic



Demo: create a new Flink job



https://docs.google.com/file/d/164PcycZSIILzNTQSXvdWzUCjvY3cwwXr/preview


Override source config

Override Kafka cluster VIP

kafka-test:2181 kafka-prod:2181



Override job config



Configure resources



Configure multiple sources or sinks

kafka-test:2181 kafka-prod:2181



Deep links



Duplo blocks

● Filter

● Projector

● Data Hygiene

● Connectors



Sources

● Kafka

● Hive

Supported Source and Sink Connectors

Sinks

● Elasticsearch

● Kafka

● Hive

● Keystone



Agenda

● Introduction
● Apache Flink primer
● SPaaS Overview
● Keystone Router
● Custom Stream Processing Applications
● Backfill and Rewind



Things can go wrong



Application bug
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Sink failure

Flink 
Streaming 

Job
SinkSource



Dependency service failure

Flink 
Streaming 

Job
Sink

Micro
Service 

Source

Data Enrichment



How to recover

● Backfill (available now)

● Rewind Flink job (coming soon)



How to recover

● Backfill

● Rewind Flink job



Live job continues

Live Job

SinkKafka

TimeNow ->outage period



Hive as backfill source

Live Job

Sink

Backfill Job

Kafka

TimeNow ->outage period



Choose Hive source



Configure Hive source



Not a lambda architecture

● Single streaming code base

● Just switch source from Kafka to Hive



Hive backfill probably not for stateful jobs

● Warm-up issue

● Ordering issue
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Stateful stream processor

Image adapted from Stephen Ewen



Warm-up period

SinkBackfill Job

Timeoutage periodWarm-up period



No output emit during warm-up

SinkBackfill Job

Timeoutage periodWarm-up period

Emit output No output 



Hive backfill probably not for stateful jobs

● Warm-up issue

● Ordering issue



Kafka: messages ordered within a partition

Source: kafka.apache.org



Hadoop input split
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Where is the order?

f0 (hour=0) f1 f2 (hour=23) f3 (hour=12) f4 (hour=3)

s0 s1 s2  s3 s4 s5 s6 s7 s8 s9

files

splits

Task
Manager

s0 (hour=0)

...

s3 (hour=23) s6 (hour=12) s9 (hour=3)

...



Does time/ordering matters?

● Probably not for stateless computation

● Probably important for stateful 

computation



Window with allowed lateness

DataStream<T> input = ...;

input

    .keyBy(<key selector>)

    .window(<window assigner>)

    .allowedLateness(<time>)

    .<windowed transformation>(<window function>);

Source: flink.apache.org



How to recover

● Backfill

● Rewind Flink job



Flink checkpoint and fault tolerance

Time
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Flink rewind

Time
Checkpoint y Checkpoint x

outage window

Checkpoint x+1

Now



Flink rewind

Time
Checkpoint y Checkpoint x

outage window

Checkpoint x+1



Kafka retention

Time
outage window NowKafka retention

As far as we 
can go back



Hive backfill v.s. Flink rewind

Hive backfill Flink rewind

Warm-up issue Yes No

Ordering issue Yes No

Data retention Months Hours or days

Applicability Stateless Stateless and 
stateful



Pros for Hive backfill source

● Long-term storage (a few months)

● Fast recovery

○ S3 is very scalable

○ Runs in parallel with live job



Stateless Stateful

Hive backfill Flink rewind

Today’s recommendation



Stateless Stateful

Hive backfill Flink 
rewind

Is this the future?



Stateless Stateful

Flink rewind

Or is this the future?



Caveats for reprocessing

● Does not overwhelm external services

● Non-retractable sink output

● Non-replayable dependencies



Does not overwhelm external services
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● Duplicates are ok

● Idempotent sink 

● Cleanable sink 

○ e.g. drop Hive partition with bad data

Non-retractable sink output
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Convert table to stream
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Convert table to stream
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State

A/B data becomes 
part of app state



Stream Kong



Putting together



Amazon EC2

Titus Container Runtime

Stream Processing Platform
(Flink Streaming Engine, Config Management)

Reusable Components
Source & Sink Connectors, Filtering, Projection, etc.

Keystone Routers
(with UDF)

Streaming Jobs
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SPaaS Layered Cake



Geico caveman, https://memegenerator.net



Thank you! 

@stevenzwu


