Presented By
O’Reilly + Intel AI
Put AI to Work
April 15-18, 2019
New York, NY
Discover opportunities for applied AI
Organizations that successfully apply AI innovate and compete more effectively. How is AI transforming your business?
Be a part of the program—apply to speak by October 16.

nGraph: Unlocking Next-Generation Performance with Deep Learning Compilers

Adam Straw (Intel), Adam Procter (Intel), Robert Earhart (Intel)
11:05am11:45am Thursday, April 18, 2019
Location: Grand Ballroom West

The rapid growth of deep learning in demanding, large-scale, real-world applications has led to a rapid increase in demand for high-performance training and inference solutions. This demand is reflected in the growth of investment in deep learning performance by major hardware manufacturers, including a proliferation of new application-specific accelerators. But performance is not driven by hardware alone. In the software realm, a new class of deep learning compilers has emerged, which brings to bear both classic and novel compiler techniques in order to maximize the performance of deep learning systems. Recently developed deep learning compilers include NNVM/TVM from the University of Washington and Amazon, Glow from Facebook, XLA from Google, and nGraph from Intel. These deep learning compilers unlock a wealth of optimizations which take a view of the whole data-flow graph. This approach achieves substantial speedups over the approach favored by existing frameworks, where an interpreter orchestrates the invocation of per-op compute kernels which mst be optimized specifically for the framework and hardware target.

In this talk, we provide a comprehensive overview of the nGraph deep learning compiler from Intel. The talk will include:

(1) an overview of the motivation for deep learning compilers, and their design challenges; (2) a deep dive into the design of nGraph, including the design of its intermediate representation, optimization pipelines, runtime interface, and framework integration; and (3) a brief look at related efforts and future directions in deep learning compiler research.

Photo of Adam Straw

Adam Straw


Adam Straw is a Deep Learning Software Engineer in the Artificial Intelligence Products Group at Intel Corporation. Adam received a B.S. in Computer Engineering from Iowa State University and is currently working on a M.S. in Computer Science with a specialty in machine learning at Georgia Institute of Technology. Adam work on Intel® nGraph™ deep learning compiler with special focus on core design including current responsibilities for the nGraph quantization scheme.

Photo of Adam Procter

Adam Procter


Adam Procter is a Deep Learning Software Engineer in the Artificial Intelligence Products Group at Intel Corporation, where he works on the core design of the Intel® nGraph™ deep learning compiler. Prior to joining Intel, he received the Ph.D. in Computer Science from the University of Missouri, where his research focused on programming language semantics, high-assurance computing, and techniques for compiling functional programming languages to reconfigurable hardware.

Photo of Robert Earhart

Robert Earhart


Rob Earhart is a Deep Learning Software Engineer in the Artificial Intelligence Products Group at Intel Corporation, where he works on PlaidML, an open-source polyhedral tensor compiler that makes it pretty easy to run neural networks with good performance on a wide variety of hardware.

Prior to Intel (and prior to diving into machine learning systems implementation), Rob worked on the NT kernel, was one of the original Hyper-V hypervisor engineers, and co-founded the virtual machine monitor that grew up to power Google Compute Engine.

Leave a Comment or Question

Help us make this conference the best it can be for you. Have questions you'd like this speaker to address? Suggestions for issues that deserve extra attention? Feedback that you'd like to share with the speaker and other attendees?

Join the conversation here (requires login)