Sep 9–12, 2019

Deep learning on mobile

Siddha Ganju (NVIDIA), Meher Kasam (Square)
4:50pm5:30pm Wednesday, September 11, 2019
Location: Expo Hall 3
Average rating: *****
(5.00, 1 rating)

Who is this presentation for?

  • Software developers

Level

Beginner

Description

Over the last few years, CNNs have risen in popularity, especially in the area of computer vision. Many mobile applications running on smartphones and wearable devices could benefit from the new opportunities enabled by deep learning techniques. However, CNNs are by nature computationally and memory intensive, making them challenging to deploy on a mobile device.

Siddha Ganju and Meher Kasam explain practically how to bring the power of convolutional neural networks and deep learning to memory- and power-constrained devices like smartphones. You’ll learn various strategies to circumvent obstacles and build mobile-friendly, shallow CNN architectures that significantly reduce the memory footprint and therefore make them easier to store on a smartphone. Siddha and Meher also dive into how to use a family of model compression techniques to prune the network size for live-image processing, enabling you to build a CNN version optimized for inference on mobile devices. Along the way, you’ll learn practical strategies to preprocess your data in a manner that makes the models more efficient in the real world.

Prerequisite knowledge

  • A basic understanding of deep learning

What you'll learn

  • Learn how to optimize a model for minimum latency and maximum speed
Photo of Siddha Ganju

Siddha Ganju

NVIDIA

Siddha Ganju is a self-driving solutions architect at NVIDIA and was featured by Forbes on their 30 under 30 list. Previously, she developed deep learning models for resource constraint edge devices at Deep Vision. A graduate from Carnegie Mellon University, her prior work ranges from visual question answering to generative adversarial networks to gathering insights from CERN’s petabyte-scale data, and she’s been published at top-tier conferences including CVPR and NeurIPS. Serving as an AI domain expert, she’s also been guiding teams at NASA as well as featured as a jury member in several international tech competitions.

Photo of Meher Kasam

Meher Kasam

Square

Meher Kasam is an iOS software engineer at Square and is a seasoned software developer with apps used by tens of millions of users every day. He’s shipped features for a range of apps from Square’s point of sale to the Bing app. Previously, he worked at Microsoft, where he was the mobile development lead for the Seeing AI app, which has received widespread recognition and awards from Mobile World Congress, CES, FCC, and the American Council of the Blind, to name a few. A hacker at heart with a flair for fast prototyping, he’s won close to two dozen hackathons and converted them to features shipped in widely used products. He also serves as a judge of international competitions including Global Mobile Awards, Edison Awards.

Leave a Comment or Question

Help us make this conference the best it can be for you. Have questions you'd like this speaker to address? Suggestions for issues that deserve extra attention? Feedback that you'd like to share with the speaker and other attendees?

Join the conversation here (requires login)

Contact us

confreg@oreilly.com

For conference registration information and customer service

partners@oreilly.com

For more information on community discounts and trade opportunities with O’Reilly conferences

Become a sponsor

For information on exhibiting or sponsoring a conference

pr@oreilly.com

For media/analyst press inquires