Presented By O’Reilly and Intel Nervana
Put AI to work
September 17-18, 2017: Training
September 18-20, 2017: Tutorials & Conference
San Francisco, CA

Deep reinforcement learning in the enterprise: Bridging the gap from games to industry

Mark Hammond (Bonsai)
2:35pm–3:15pm Wednesday, September 20, 2017
Implementing AI
Location: Yosemite BC Level: Intermediate
Secondary topics:  Algorithms, Enterprise adoption
Average rating: ****.
(4.67, 3 ratings)

Prerequisite Knowledge

  • General experience with programming
  • Familiarity with supervised, unsupervised, and reinforcement learning

What you'll learn

  • Understand how enterprises can leverage reinforcement learning and simulation techniques to solve real-world industrial AI problems
  • Explore lessons learned from real-world use cases and learn best practices to effectively leverage deep reinforcement learning in your own applications

Description

Reinforcement learning is an increasingly popular machine learning technique that is particularly well suited for addressing problems within dynamic and adaptive environments. When paired with simulations, reinforcement learning is a powerful tool for training AI models that can help increase automation or optimize operational efficiency of sophisticated systems such as robotics, manufacturing, and supply chain logistics.

However, moving from the games commonly used to demonstrate these techniques into real-world applications isn’t always straightforward. Structuring solutions to move beyond purely data-driven training introduces all sorts of new complexity, requiring you to consider things like how to use simulations to target your learning objectives, what kinds of simulations are applicable, how to deal with long-running simulations, how to incorporate ongoing training refinement once deployed, how to account for scaling and performance, and ultimately how to bridge from simulation to the real world.

Mark Hammond explores these considerations using real-world use cases and shares lessons learned and best practices so that you can effectively leverage reinforcement learning in your own applications.

Photo of Mark Hammond

Mark Hammond

Bonsai

Some are cognitive scientists; others are computer scientists and engineers. Mark Hammond is a cognitive entrepreneur bringing together both fields along with business acumen. He has a deep passion for understanding how the mind works, combined with an understanding of own human nature, and turns that knowledge into beneficial applied technology. As the founder and CEO of Bonsai, Mark is enabling AI for everyone. Mark has been programming since the first grade and started working at Microsoft as an intern and contractor while still in high school. He has held positions at Microsoft and numerous startups and in academia, including turns at Numenta and in the Yale Neuroscience Department. He holds a degree in computation and neural systems from Caltech.