

Robert Crowe
TensorFlow Developer Advocate
 @robert_crowe

Modeling Code

Configuration

Data Collection

Data Verification

Feature Extraction

Process Management Tools

Analysis Tools

Machine Resource
Management

Serving
Infrastructure

Monitoring

Modeling
Code

https://twitter.com/ginablaber/status/971450218095943681

Powers Alphabet’s most important bets and products

“... we have re-tooled our machine learning platform to use
TensorFlow. This yielded significant productivity gains
while positioning ourselves to take advantage of the latest
industry research.”

Ranking Tweets with TensorFlow - Twitter blog post

Machine Learning Development

● Labeled data

● Feature space coverage

● Minimal dimensionality

● Maximum predictive data

● Fairness

● Rare conditions

● Data lifecycle management

Modern Software Development

● Scalability

● Extensibility

● Configuration

● Consistency & Reproducibility

● Modularity

● Best Practices

● Testability

● Monitoring

● Safety & Security

Machine Learning Development

● Labeled data

● Feature space coverage

● Minimal dimensionality

● Maximum predictive data

● Fairness

● Rare conditions

● Data lifecycle management

+

“Hidden Technical Debt in Machine Learning Systems”

NIPS 2015

http://bit.ly/ml-techdebt

http://bit.ly/ml-techdebt

BERLIN 2019

Libraries

Components

TFX Production Components

Data
Validation

Feature
Engineering

Train
Model

Data
Ingestion

Validate
Model

Push If
Good

Serve
Model

Horizontal Layers Coordinate Components

14

Data
Ingestion

TensorFlow
Data Validation

TensorFlow
Transform

Estimator
Model

TensorFlow
Model Analysis

TensorFlow
Serving Logging

Shared Utilities for Garbage Collection, Data Access Controls

Pipeline Storage

Shared Configuration Framework and Job Orchestration

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization

Metadata Store

Type definitions of Artifacts and their Properties

Type definitions of Artifacts and their Properties

Execution Records (Runs) of Components

Type definitions of Artifacts and their Properties

Execution Records (Runs) of Components

Data Provenance Across All Executions

Find out which data a model
was trained on

Compare previous model runs

Carry-over state from previous
model runs

Re-use previously computed
outputs

Flexible runtimes run components in the proper order using
orchestration systems such as Airflow or Kubeflow

Airflow Kubeflow Pipelines

Kubeflow

● Open-source Production ML on Kubernetes

● Includes TFX

● Container set

● Management

● Monitoring

● Not just ML

TensorFlow Extended (TFX)

● Open-source version of what Google uses

internally for Production ML

● Currently supported orchestrators:

○ Kubeflow

○ Apache Airflow

○ Apache Beam

○ We’re adding more

○ You can add more

Apache Beam

- A unified batch and stream distributed processing API

- A set of SDK frontends: Java, Python, Go, Scala, SQL

- A set of Runners which can execute Beam jobs into various
backends: Local, Apache Flink, Apache Spark, Apache
Gearpump, Apache Samza, Apache Hadoop, Google Cloud
Dataflow, …

Sum Per Key

input | Sum.PerKey()

Python

input.apply(

 Sum.integersPerKey())

Java

stats.Sum(s, input)

Go

SELECT key, SUM(value)

FROM input GROUP BY key

SQL

⋮

Cloud Dataflow

Apache Spark

Apache Flink

Apache Apex

Gearpump

Apache Samza

Apache Nemo
(incubating)

IBM Streams

●
● Portability framework aims to provide full interoperability across the Beam

ecosystem
● Portability API

○ Protobufs and gRPC for broad language support
○ Job submission and management: The Runner API
○ Job execution: The SDK harness

●

What’s in the box?

Beam

Spark

Component: ExampleGen

examples = csv_input(os.path.join(data_root, 'simple'))

example_gen = CsvExampleGen(input_base=examples)

Configuration

ExampleGen

Inputs and Outputs

Component: StatisticsGen

statistics_gen =
 StatisticsGen(input_data=example_gen.outputs.examples)

Visualization

StatisticsGen

ConfigurationInputs and Outputs

Analyzing Data with TensorFlow Data Validation

Component: SchemaGen

SchemaGen

infer_schema = SchemaGen(stats=statistics_gen.outputs.output)

Visualization

ConfigurationInputs and Outputs

Component: ExampleValidator

Example
Validator

validate_stats = ExampleValidator(
 stats=statistics_gen.outputs.output,
 schema=infer_schema.outputs.output)

Visualization

ConfigurationInputs and Outputs

Component: Transform

transform = Transform(
 input_data=example_gen.outputs.examples,
 schema=infer_schema.outputs.output,
 module_file=taxi_module_file)

for key in _DENSE_FLOAT_FEATURE_KEYS:
 outputs[_transformed_name(key)] = transform.scale_to_z_score(
 _fill_in_missing(inputs[key]))
...

outputs[_transformed_name(_LABEL_KEY)] = tf.where(
 tf.is_nan(taxi_fare),
 tf.cast(tf.zeros_like(taxi_fare), tf.int64),
 # Test if the tip was > 20% of the fare.
 tf.cast(
 tf.greater(tips, tf.multiply(taxi_fare, tf.constant(0.2))), tf.int64))

...

Transform

Code

ConfigurationInputs and Outputs

Using TensorFlow Transform for Feature Engineering

Using TensorFlow Transform for Feature Engineering

Training Serving

Component: Trainer

Trainer

Transform SchemaGen

Evaluator

Code

Model
Validator Pusher

Highlight: SavedModel Format

TensorFlow
Serving

TensorFlow
Model Analysis

Train, Eval, and Inference Graphs

SignatureDefEvalSavedModel

SavedModel

Inputs and Outputs

Component: Trainer

trainer = Trainer(
 module_file=taxi_module_file,
 transformed_examples=transform.outputs.transformed_examples,
 schema=infer_schema.outputs.output,
 transform_output=transform.outputs.transform_output,
 train_steps=10000,
 eval_steps=5000,
 warm_starting=True)

Just TensorFlow :)

Trainer

Transform SchemaGen

Evaluator

Code

Model
Validator Pusher

Inputs and Outputs

Code

Configuration

Component: Evaluator

Evaluator

ExampleGen Trainer

Evaluation
Metrics

model_analyzer = Evaluator(
 examples=examples_gen.outputs.output,
 eval_spec=taxi_eval_spec,
 model_exports=trainer.outputs.output)

Visualization

ConfigurationInputs and Outputs

Component: ModelValidator

● Validate using current eval data
● “Next-day eval”, validate using unseen data

Model
Validator

ExampleGen Trainer

Validation
Outcome

model_validator = ModelValidator(
 examples=examples_gen.outputs.output,
 model=trainer.outputs.output,
 eval_spec=taxi_mv_spec)

ConfigurationInputs and Outputs

Configuration Options

Component: Pusher

Pusher

Model
Validator

Pusher
PusherDeployment

Options

pusher = Pusher(
 model_export=trainer.outputs.output,
 model_blessing=model_validator.outputs.blessing,
 serving_model_dir=serving_model_dir)

Block push on validation outcome

Push destinations supported today
● Filesystem (TensorFlow Lite, TensorFlow JS)
● TensorFlow Serving

ConfigurationInputs and Outputs

Your model predicts
click-through rates (CTR),
helping you decide how much
inventory to order.

dropped

Mispredictions do not have uniform cost to your business.

The data you have is rarely the data you wish you had.

Model objective is nearly always a proxy for your business objectives

The real world doesn’t stand still.

ML Insights Triangle

ML Insights Triangle
Some assumption was violated, but which one?

Business Realities Changed?

Business Realities Changed?

Bad Data?

Business Realities Changed?

Bad Data?
Model Needs

Improvement?

Check your data with the ExampleValidator component and
the tools in TensorFlow Data Validation:

● No outliers

● No missing features

● Minimal distribution shift

shoe_sizeshoe_size

price

Query for other examples by
matching on those important
features

● Maybe the model overgeneralized from
too few examples with this particular
feature combo?

● Add features to help create distinctions
you’d like the model to make.

● Collect more examples with that feature
combo if possible!

Check your model performance with the built-in TF Model
Analysis component:

● How does the model perform on different slices of data?

● How does the current model performance compare to
previous versions?

br
ic

k

lig
ht

...
m

ed
i..

.

gr
ey

bl
ac

k
br

ow
n

da
rk

...
m

ap
le

ta
n

ol
iv

e

w
hi

te

iv
or

y

bo
ne

cr
ea

m

ba
na

...
be

ig
e

re
d

sc
ar

...
na

vy
...

bl
ue

im
pe

...
da

rk
...

pi
nk

go
ld

brick

light grey

Understand the input your model is
receiving

Ask and answer “what-if” questions
about your model’s output

Compare model performance
across different slices of your data

Compare performance across
multiple models

Remember, CTR is just the model’s proxy objective!

● Your actual business objectives depend on: revenue, cost,
your supply, etc.

● To analyze misprediction cost, join your model’s predictions
with the rest of your business data

Out-of-the-box components for your production model needs

Flexible orchestration and metadata

Extensible with custom components

Visit us at https://tensorflow.org/tfx and show us how you’ve used and extended TFX!

https://tensorflow.org/tfx

https://www.tensorflow.org/tfx

Robert Crowe
TensorFlow Developer Advocate

 @robert_crowe

https://tensorflow.org/tfx

https://github.com/tensorflow/tfx

http://bit.ly/tfx-forum

Helpful resources

Web

Repo

Community

https://tensorflow.org/tfx
https://github.com/tensorflow/tfx
http://bit.ly/tfx-forum

Developer Tutorial:

https://www.tensorflow.org/tfx/tutorials/tfx/airflow_workshop

You can run it too!

https://goo.gle/AIC-SJ-TFX

